Loading [MathJax]/jax/output/SVG/config.js
Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 2015, Issue 12, Pages 3–26 (Mi at14326)  

This article is cited in 19 scientific papers (total in 19 papers)

Surveys

Complex networks and activity spreading

O. P. Kuznetsov

Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, Moscow, Russia
References:
Abstract: We give a brief survey of the basic notions of the theory of complex networks and various models of activity spreading in networks. We consider the role of random graph theory for the study of complex networks, describe small world and scale-free networks, activity spreading models in social networks, percolation processes, the concept of self-organized criticality, and two versions of its formalization: cellular automata and the chip firing game. We note the common elements of all considered models.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00422
Presented by the member of Editorial Board: D. A. Novikov

Received: 10.02.2015
English version:
Automation and Remote Control, 2015, Volume 76, Issue 12, Pages 2091–2109
DOI: https://doi.org/10.1134/S0005117915120012
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: O. P. Kuznetsov, “Complex networks and activity spreading”, Avtomat. i Telemekh., 2015, no. 12, 3–26; Autom. Remote Control, 76:12 (2015), 2091–2109
Citation in format AMSBIB
\Bibitem{Kuz15}
\by O.~P.~Kuznetsov
\paper Complex networks and activity spreading
\jour Avtomat. i Telemekh.
\yr 2015
\issue 12
\pages 3--26
\mathnet{http://mi.mathnet.ru/at14326}
\elib{https://elibrary.ru/item.asp?id=25448919}
\transl
\jour Autom. Remote Control
\yr 2015
\vol 76
\issue 12
\pages 2091--2109
\crossref{https://doi.org/10.1134/S0005117915120012}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000366632600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84950114750}
Linking options:
  • https://www.mathnet.ru/eng/at14326
  • https://www.mathnet.ru/eng/at/y2015/i12/p3
  • This publication is cited in the following 19 articles:
    1. L. Yu. Zhilyakova, O. P. Kuznetsov, “Modelirovanie neironov i ikh vzaimodeistvii. Obzor podkhodov i metodov”, UBS, 106 (2023), 6–51  mathnet  crossref
    2. Yue Liu, Lin Ding, ZhengWei Yang, XianYuan Ge, DaHui Liu, Wei Liu, Tao Yu, Maxim Avdeev, SiQi Shi, “Domain knowledge discovery from abstracts of scientific literature on Nickel-based single crystal superalloys”, Sci. China Technol. Sci., 66:6 (2023), 1815  crossref
    3. Yanchao Liu, Pengzhou Zhang, Lei Shi, Junpeng Gong, “A Survey of Information Dissemination Model, Datasets, and Insight”, Mathematics, 11:17 (2023), 3707  crossref
    4. Shan Liu, Hao Wen, 2023 16th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), 2023, 1  crossref
    5. Muzhen Guan, Yuanjun Xie, Chenxi Li, Tian Zhang, Chaozong Ma, Zhongheng Wang, Zhujing Ma, Huaning Wang, Peng Fang, “Rich-club reorganization of white matter structural network in schizophrenia patients with auditory verbal hallucinations following 1 Hz rTMS treatment”, NeuroImage: Clinical, 40 (2023), 103546  crossref
    6. Hosseini S., Zandvakili A., “The Seirs-C Model of Information Diffusion Based on Rumour Spreading With Fuzzy Logic in Social Networks”, Int. J. Comput. Math., 99:9 (2022), 1918–1940  crossref  isi
    7. Hosseini S., Zandvakili A., “Information Dissemination Modeling Based on Rumor Propagation in Online Social Networks With Fuzzy Logic”, Soc. Netw. Anal. Min., 12:1 (2022), 34  crossref  isi  scopus
    8. Bazenkov N., “Heterogeneous Formal Neurons and Modeling of Multi-Transmitter Neural Ensembles”, Artificial Intelligence, Rcai 2021, Lecture Notes in Artificial Intelligence, 12948, eds. Kovalev S., Kuznetsov S., Panov A., Springer International Publishing Ag, 2021, 3–16  crossref  isi  scopus
    9. Tarassov V.B., Gapanyuk Yu.E., “Complex Graphs in the Modeling of Multi-Agent Systems: From Goal-Resource Networks to Fuzzy Metagraphs”, Artificial Intelligence, Lecture Notes in Artificial Intelligence, 12412, eds. Kuznetsov S., Panov A., Yakovlev K., Springer International Publishing Ag, 2020, 177–198  crossref  isi
    10. I. V. Matyushkin, M. A. Zapletina, “Obzor po tematike kletochnykh avtomatov na baze sovremennykh otechestvennykh publikatsii”, Kompyuternye issledovaniya i modelirovanie, 11:1 (2019), 9–57  mathnet  crossref
    11. L. Yu. Zhilyakova, N. A. Kuznetsov, V. G. Matiukhin, A. B. Shabunin, A. K. Takmazian, “Locomotive Assignment Graph Model for Freight Traffic on Linear Section of Railway. The Problem of Finding a Maximal Independent Schedule Coverage”, Autom Remote Control, 80:5 (2019), 946  crossref
    12. L. Yu. Zhilyakova, N. A. Kuznetsov, V. G. Matyukhin, A. B. Shabunin, A. K. Takmazyan, “Grafovaya model raspredeleniya lokomotivov dlya gruzovykh perevozok na lineinom uchastke zheleznoi dorogi. Zadacha o maksimalnom po vklyucheniyu pokrytii grafika”, Probl. upravl., 3 (2018), 65–75  mathnet  crossref
    13. N. Bazenkov, V. Dyakonova, O. Kuznetsov, D. Sakharov, D. Vorontsov, L. Zhilyakova, “Discrete modeling of multi-transmitter neural networks with neuronal competition”, Biologically Inspired Cognitive Architectures (BICA) For Young Scientists, Advances in Intelligent Systems and Computing, 636, eds. A. Samsonovich, V. Klimov, Springer-Verlag, Berlin, 2018, 10–16  crossref  isi  scopus
    14. N. Bazenkov, D. Vorontsov, V. Dyakonova, L. Zhilyakova, I. Zakharov, O. Kuznetsov, S. Kulivets, D. Sakharov, “Discrete modeling of neuronal interactions in multi-transmitter networks”, Sci. Tech. Inf. Process., 45:5 (2018), 283–296  crossref  isi  scopus
    15. O. P. Kuznetsov, “Stationary ensembles in threshold networks”, Autom. Remote Control, 78:3 (2017), 475–489  mathnet  crossref  mathscinet  isi  elib
    16. V. Breer, D. Novikov, A. Rogatkin, Mob control: models of threshold collective behavior, Studies in Systems Decision and Control, 85, Springer, 2017, 134 pp.  crossref  mathscinet  isi
    17. J. Liu, K. Li, W. Zheng, Ch. Li, “Statistic characteristics analysis of railway hazard causation based on complex network”, Proceedings of the 2017 International Conference on Applied Mathematics, Modelling and Statistics Application, AMMSA 2017, Advances in Intelligent Systems Research, 141, eds. B. Harish, A. Rojas, K. Weller, Atlantis Press, 2017, 218–221  isi
    18. V. V. Breer, “Models of tolerant threshold behavior (from T. Shelling to M. Granovetter)”, Automation and Remote Control, 78:7 (2017), 1304–1318  mathnet  crossref
    19. I. N. Barabanov, D. A. Novikov, “Dynamic models of mob excitation control in discrete time”, Autom. Remote Control, 77:10 (2016), 1792–1804  mathnet  crossref  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
    Statistics & downloads:
    Abstract page:743
    Full-text PDF :257
    References:85
    First page:59
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025