Loading [MathJax]/jax/output/SVG/config.js
Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 2014, Issue 11, Pages 110–126 (Mi at14145)  

This article is cited in 12 scientific papers (total in 12 papers)

Robust and Adaptive Systems

Frequency-domain criteria for consensus in multiagent systems with nonlinear sector-shaped couplings

A. V. Proskurnikovab

a Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, St. Petersburg, Russia
b St. Petersburg State University, St. Petersburg, Russia
References:
Abstract: Consideration was given to the distributed algorithms for consensus (synchronization) in the multiagent networks with identical agents of arbitrary order and unknown nonlinear couplings satisfying the sector inequalities or their multidimensional counterparts. The network topology may be unknown and varying in time. A frequency synchronization criterion was proposed which is a generalization of the circular criterion for absolute stability of the Lur'e systems.
Presented by the member of Editorial Board: P. S. Shcherbakov

Received: 05.12.2012
English version:
Automation and Remote Control, 2014, Volume 75, Issue 11, Pages 1982–1995
DOI: https://doi.org/10.1134/S0005117914110071
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. V. Proskurnikov, “Frequency-domain criteria for consensus in multiagent systems with nonlinear sector-shaped couplings”, Avtomat. i Telemekh., 2014, no. 11, 110–126; Autom. Remote Control, 75:11 (2014), 1982–1995
Citation in format AMSBIB
\Bibitem{Pro14}
\by A.~V.~Proskurnikov
\paper Frequency-domain criteria for consensus in multiagent systems with nonlinear sector-shaped couplings
\jour Avtomat. i Telemekh.
\yr 2014
\issue 11
\pages 110--126
\mathnet{http://mi.mathnet.ru/at14145}
\transl
\jour Autom. Remote Control
\yr 2014
\vol 75
\issue 11
\pages 1982--1995
\crossref{https://doi.org/10.1134/S0005117914110071}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000345073800007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84920887794}
Linking options:
  • https://www.mathnet.ru/eng/at14145
  • https://www.mathnet.ru/eng/at/y2014/i11/p110
  • This publication is cited in the following 12 articles:
    1. Sun F., Liao X., Kurths J., “Mean-Square Consensus For Heterogeneous Multi-Agent Systems With Probabilistic Time Delay”, Inf. Sci., 543 (2021), 112–124  crossref  mathscinet  isi
    2. Plotnikov S.A. Fradkov A.L., “Synchronization of Nonlinearly Coupled Networks Based on Circle Criterion”, Chaos, 31:10 (2021), 103110  crossref  isi  scopus
    3. O. R. Kuzichkin, G. S. Vasilyev, D. I. Surzhik, “Design an algorithm for analyzing the stability of information exchange between uavs in the high-order agent formation”, Ing. UC, 27:2 (2020), 224–232  isi
    4. P. Feketa, A. Schaum, T. Meurer, D. Michaelis, K. Ochs, “Synchronization of nonlinearly coupled networks of chua oscillators”, IFAC PAPERSONLINE, 52:16 (2019), 628–633  crossref  mathscinet  isi
    5. A. V. Proskurnikov, A. S. Matveev, “Tsypkin and Jury–Lee criteria for synchronization and stability of discrete-time multiagent systems”, Autom. Remote Control, 79:6 (2018), 1057–1073  mathnet  crossref  isi  elib
    6. S. I. Tomashevich, “Control for a system of linear agents based on a high order adaptation algorithm”, Autom. Remote Control, 78:2 (2017), 276–288  mathnet  crossref  mathscinet  isi  elib
    7. A. A. Gorshkov, S. A. Plotnikov, A. L. Fradkov, “Bifurcation and synchronization analysis of neural mass model subpopulations”, IFAC-PapersOnLine, 50:1 (2017), 14741–14745  crossref  isi  scopus
    8. A. V. Proskurnikov, S. E. Parsegov, “Problem of uniform deployment on a line segment for second-order agents”, Autom. Remote Control, 77:7 (2016), 1248–1258  mathnet  crossref  isi  elib  elib
    9. K. S. Amelin, B. R. Andrievsky, S. I. Tomashevich, A. L. Fradkov, “Data exchange with adaptive coding between quadrotors in a formation”, Autom. Remote Control, 80:1 (2019), 150–163  mathnet  crossref  elib
    10. A. V. Proskurnikov, A. L. Fradkov, “Problems and methods of network control”, Autom. Remote Control, 77:10 (2016), 1711–1740  mathnet  crossref  isi  elib
    11. Q. Zhu, J. Wu, R. Xiong, “Stochastic consensus of a class of continuous-time multi-agent systems with a leading agent”, Int. J. Adv. Robot. Syst., 13 (2016), 59  crossref  isi  scopus
    12. A. V. Proskurnikov, “Consensus in nonlinear stationary networks with identical agents”, Autom. Remote Control, 76:9 (2015), 1551–1565  mathnet  crossref  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
    Statistics & downloads:
    Abstract page:367
    Full-text PDF :117
    References:47
    First page:15
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025