Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 2007, Issue 10, Pages 53–69 (Mi at1064)  

This article is cited in 8 scientific papers (total in 8 papers)

Stability of Systems

Analysis of stochastic attractors under the stationary point-cycle bifurcation

I. A. Bashkirtseva, T. V. Perevalova

Ural State University, Ekaterinburg, Russia
References:
Abstract: In this paper, consideration is given to the stationary point-cycle bifurcation in nonlinear dynamical systems affected by random perturbations. To describe probabilistic properties of corresponding stochastic attractors, we propose to use a new construction, i.e., function of stochastic sensitivity. This function allows describing the spread of random trajectories about the determinate attractor in quite a simple manner. The theoretical description of the function of stochastic sensitivity is given both for the stationary point and limit cycle. The potential of this approach is demonstrated by the examples of stochastic Hopf, Van der Pol, and brusselator models.
Presented by the member of Editorial Board: A. I. Kibzun

Received: 14.12.2006
English version:
Automation and Remote Control, 2007, Volume 68, Issue 10, Pages 1778–1793
DOI: https://doi.org/10.1134/S0005117907100062
Bibliographic databases:
Document Type: Article
PACS: 02.30.Oz, 47.20.Ky
Language: Russian
Citation: I. A. Bashkirtseva, T. V. Perevalova, “Analysis of stochastic attractors under the stationary point-cycle bifurcation”, Avtomat. i Telemekh., 2007, no. 10, 53–69; Autom. Remote Control, 68:10 (2007), 1778–1793
Citation in format AMSBIB
\Bibitem{BasPer07}
\by I.~A.~Bashkirtseva, T.~V.~Perevalova
\paper Analysis of stochastic attractors under the stationary point-cycle bifurcation
\jour Avtomat. i Telemekh.
\yr 2007
\issue 10
\pages 53--69
\mathnet{http://mi.mathnet.ru/at1064}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2360027}
\zmath{https://zbmath.org/?q=an:1146.93039}
\transl
\jour Autom. Remote Control
\yr 2007
\vol 68
\issue 10
\pages 1778--1793
\crossref{https://doi.org/10.1134/S0005117907100062}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-35648971546}
Linking options:
  • https://www.mathnet.ru/eng/at1064
  • https://www.mathnet.ru/eng/at/y2007/i10/p53
  • This publication is cited in the following 8 articles:
    1. N. M. Firstova, “Analysis of Critical Phenomena in a Dynamic System Under the Influence of Random Perturbations”, J Math Sci, 272:6 (2023), 783  crossref
    2. N. M. Firstova, “Analiz kriticheskikh yavlenii v dinamicheskoi sisteme pod vozdeistviem sluchainykh vozmuschenii”, Materialy XVII Vserossiiskoi molodezhnoi shkoly-konferentsii «Lobachevskie chteniya-2018», 23-28 noyabrya 2018 g., Kazan.  Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 175, VINITI RAN, M., 2020, 36–43  mathnet  crossref  mathscinet
    3. Yamakou M.E., Jost J., “Weak-Noise-Induced Transitions With Inhibition and Modulation of Neural Oscillations”, Biol. Cybern., 112:5 (2018), 445–463  crossref  mathscinet  zmath  isi  scopus
    4. L. B. Ryashko, E. S. Slepukhina, “Analiz vozdeistviya additivnogo i parametricheskogo shuma na model neirona Morris – Lekara”, Kompyuternye issledovaniya i modelirovanie, 9:3 (2017), 449–468  mathnet  crossref
    5. L. B. Ryashko, E. S. Slepukhina, “Analiz indutsirovannykh shumom pachechnykh kolebanii v dvumernoi modeli Khindmarsh-Roze”, Kompyuternye issledovaniya i modelirovanie, 6:4 (2014), 605–619  mathnet  crossref
    6. I. A. Bashkirtseva, D. R. Nurmukhametova, L. B. Ryashko, “On controlling stochastic sensitivity of oscillatory systems”, Autom. Remote Control, 74:6 (2013), 932–943  mathnet  crossref  mathscinet  isi
    7. I. A. Bashkirtseva, L. B. Ryashko, E. S. Slepukhina, “Bifurkatsiya rasschepleniya stokhasticheskikh tsiklov v modeli Fitskhyu–Nagumo”, Nelineinaya dinam., 9:2 (2013), 295–307  mathnet
    8. I. A. Bashkirtseva, E. D. Ekaterinchuk, T. V. Ryazanova, A. A. Sysolyatina, “Matematicheskoe modelirovanie stokhasticheskikh ravnovesii i biznes-tsiklov modeli Gudvina”, Kompyuternye issledovaniya i modelirovanie, 5:1 (2013), 107–118  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
    Statistics & downloads:
    Abstract page:265
    Full-text PDF :95
    References:50
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025