Abstract:
In this paper, consideration is given to the stationary point-cycle bifurcation in nonlinear dynamical systems affected by random perturbations. To describe probabilistic properties of corresponding stochastic attractors, we propose to use a new construction, i.e., function of stochastic sensitivity. This function allows describing the spread of random trajectories about the determinate attractor in quite a simple manner. The theoretical description of the function of stochastic sensitivity is given both for the stationary point and limit cycle. The potential of this approach is demonstrated by the examples of stochastic Hopf, Van der Pol, and brusselator models.
Presented by the member of Editorial Board:A. I. Kibzun
Citation:
I. A. Bashkirtseva, T. V. Perevalova, “Analysis of stochastic attractors under the stationary point-cycle bifurcation”, Avtomat. i Telemekh., 2007, no. 10, 53–69; Autom. Remote Control, 68:10 (2007), 1778–1793
\Bibitem{BasPer07}
\by I.~A.~Bashkirtseva, T.~V.~Perevalova
\paper Analysis of stochastic attractors under the stationary point-cycle bifurcation
\jour Avtomat. i Telemekh.
\yr 2007
\issue 10
\pages 53--69
\mathnet{http://mi.mathnet.ru/at1064}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2360027}
\zmath{https://zbmath.org/?q=an:1146.93039}
\transl
\jour Autom. Remote Control
\yr 2007
\vol 68
\issue 10
\pages 1778--1793
\crossref{https://doi.org/10.1134/S0005117907100062}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-35648971546}
Linking options:
https://www.mathnet.ru/eng/at1064
https://www.mathnet.ru/eng/at/y2007/i10/p53
This publication is cited in the following 8 articles:
N. M. Firstova, “Analysis of Critical Phenomena in a Dynamic System Under the Influence of Random Perturbations”, J Math Sci, 272:6 (2023), 783
N. M. Firstova, “Analiz kriticheskikh yavlenii v dinamicheskoi sisteme pod vozdeistviem sluchainykh vozmuschenii”, Materialy XVII Vserossiiskoi molodezhnoi shkoly-konferentsii «Lobachevskie chteniya-2018», 23-28 noyabrya 2018 g., Kazan. Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 175, VINITI RAN, M., 2020, 36–43
Yamakou M.E., Jost J., “Weak-Noise-Induced Transitions With Inhibition and Modulation of Neural Oscillations”, Biol. Cybern., 112:5 (2018), 445–463
L. B. Ryashko, E. S. Slepukhina, “Analiz vozdeistviya additivnogo i parametricheskogo shuma na model neirona Morris – Lekara”, Kompyuternye issledovaniya i modelirovanie, 9:3 (2017), 449–468
L. B. Ryashko, E. S. Slepukhina, “Analiz indutsirovannykh shumom pachechnykh kolebanii v dvumernoi modeli Khindmarsh-Roze”, Kompyuternye issledovaniya i modelirovanie, 6:4 (2014), 605–619
I. A. Bashkirtseva, D. R. Nurmukhametova, L. B. Ryashko, “On controlling stochastic sensitivity of oscillatory systems”, Autom. Remote Control, 74:6 (2013), 932–943
I. A. Bashkirtseva, L. B. Ryashko, E. S. Slepukhina, “Bifurkatsiya rasschepleniya stokhasticheskikh tsiklov v modeli Fitskhyu–Nagumo”, Nelineinaya dinam., 9:2 (2013), 295–307
I. A. Bashkirtseva, E. D. Ekaterinchuk, T. V. Ryazanova, A. A. Sysolyatina, “Matematicheskoe modelirovanie stokhasticheskikh ravnovesii i biznes-tsiklov modeli Gudvina”, Kompyuternye issledovaniya i modelirovanie, 5:1 (2013), 107–118