Loading [MathJax]/jax/output/SVG/config.js
ALEA. Latin American Journal of Probability and Mathematical Statistics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Main page
About this project
Software
Classifications
Links
Terms of Use

Search papers
Search references

RSS
Current issues
Archive issues
What is RSS






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


ALEA. Latin American Journal of Probability and Mathematical Statistics, 2020, Volume 17, Pages 877–900
DOI: https://doi.org/10.30757/ALEA.v17-34
(Mi alea1)
 

Critical branching processes in random environment and Cauchy domain of attraction

C. Donga, C. Smadib, V. A. Vatutinc

a Xidian University, 266 Xinglong Section of Xifeng Road, Xi'an, Shaanxi, 710126, China
b Univ. Grenoble Alpes, INRAE, LESSEM, and Univ. Grenoble Alpes, CNRS, Institut Fourier, 2 rue de la papeterie, 38402 Saint-Martin d'Hères, France
c Department of Discrete Mathematics, Steklov Mathematical Institute of Russian Academy of Sciences, 8 Gubkin Street, 117 966 Moscow GSP-1, Russia
Funding agency Grant number
Agence Nationale de la Recherche ABIM 16-CE40-0001
French Embassy in Russia - the André Mazon program
C.S. thanks the CNRS for its financial support through its competitive funding programs on interdisciplinary research, the ANR ABIM 16-CE40-0001 as well as the Chair "Modélisation Mathèmatique et Biodiversité" of VEOLIA-Ecole Polytechnique-MNHN-F.X. She also thanks the French Embassy in Russia for its financial support via the André Mazon program.
Received: 15.11.2019
Accepted: 13.08.2020
Bibliographic databases:
Document Type: Article
Language: English
Linking options:
  • https://www.mathnet.ru/eng/alea1
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:71
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025