Abstract:
For an arbitrary set A of natural numbers, we prove the following statements: every finite family of A-computable sets containing a least element under inclusion has an A-computable universal numbering; every infinite A-computable family of total functions has (up to A-equivalence) either one A-computable Friedberg numbering or infinitely many such numberings; every A-computable family of total functions which contains a limit function has no A-computable universal numberings, even with respect to A-reducibility.
Citation:
S. A. Badaev, A. A. Issakhov, “Some absolute properties of A-computable numberings”, Algebra Logika, 57:4 (2018), 426–447; Algebra and Logic, 57:4 (2018), 275–288
This publication is cited in the following 4 articles:
M. Kh. Faizrahmanov, “On $e$-principal and $e$-complete numberings”, Math. Notes, 116:3 (2024), 541–553
M. Kh. Faizrahmanov, “On $p$-universal and $p$-minimal numberings”, Siberian Math. J., 63:2 (2022), 365–373
S. A. Badaev, B. S. Kalmurzaev, N. K. Mukash, M. Mustafa, “One-element rogers semilattices in the Ershov hierarchy”, Algebra and Logic, 60:4 (2021), 284–287
M. Kh. Faizrakhmanov, “Reshetochnye svoistva polureshetok Rodzhersa vychislimykh i obobschenno vychislimykh semeistv”, Sib. elektron. matem. izv., 16 (2019), 1927–1936