Loading [MathJax]/jax/output/CommonHTML/jax.js
Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2018, Volume 57, Number 1, Pages 14–42
DOI: https://doi.org/10.17377/alglog.2018.57.102
(Mi al833)
 

This article is cited in 15 scientific papers (total in 15 papers)

Maximal and submaximal X-subgroups

W. Guoa, D. O. Revinbca

a Department of Mathematics, University of Science and Technology of China, Hefei, 230026 P. R. China
b Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090 Russia
c Novosibirsk State University, ul. Pirogova 1, Novosibirsk, 630090 Russia
References:
Abstract: Let X be a class of finite groups closed under taking subgroups, homomorphic images, and extensions. Following H. Wielandt, we call a subgroup H of a finite group G a submaximal X-subgroup if there exists an isomorphic embedding ϕ:GG of G into some finite group G under which Gϕ is subnormal in G and Hϕ=KGϕ for some maximal X-subgroup K of G. In the case where X coincides with the class of all π-groups for some set π of prime numbers, submaximal X-subgroups are called submaximal π-subgroups. In his talk at the well-known conference on finite groups in Santa Cruz in 1979, Wielandt emphasized the importance of studying submaximal π-subgroups, listed (without proof) certain of their properties, and formulated a number of open questions regarding these subgroups. Here we prove properties of maximal and submaximal X- and π-subgroups and discuss some open questions both Wielandt’s and new ones. One of such questions due to Wielandt reads as follows: Is it always the case that all submaximal X-subgroups are conjugate in a finite group G in which all maximal X-subgroups are conjugate?
Keywords: finite group, maximal X-subgroup, submaximal X-subgroup, Hall π-subgroup, Dπ-property.
Funding agency Grant number
National Natural Science Foundation of China 11771409
Chinese Academy of Sciences 2016VMA078
Russian Academy of Sciences - Federal Agency for Scientific Organizations I.1.1, 0314-2016-0001
Supported by the NNSF of China, grant No. 11771409.
Supported by Chinese Academy of Sciences President's International Fellowship Initiative (grant No. 2016VMA078) and by SB RAS Fundamental Research Program I.1.1 (project No. 0314-2016-0001).
Received: 12.04.2017
Revised: 06.12.2017
English version:
Algebra and Logic, 2018, Volume 57, Issue 1, Pages 9–28
DOI: https://doi.org/10.1007/s10469-018-9475-8
Bibliographic databases:
Document Type: Article
UDC: 512.542.6
Language: Russian
Citation: W. Guo, D. O. Revin, “Maximal and submaximal X-subgroups”, Algebra Logika, 57:1 (2018), 14–42; Algebra and Logic, 57:1 (2018), 9–28
Citation in format AMSBIB
\Bibitem{GuoRev18}
\by W.~Guo, D.~O.~Revin
\paper Maximal and submaximal $\mathfrak X$-subgroups
\jour Algebra Logika
\yr 2018
\vol 57
\issue 1
\pages 14--42
\mathnet{http://mi.mathnet.ru/al833}
\crossref{https://doi.org/10.17377/alglog.2018.57.102}
\transl
\jour Algebra and Logic
\yr 2018
\vol 57
\issue 1
\pages 9--28
\crossref{https://doi.org/10.1007/s10469-018-9475-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000433237600002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85047159923}
Linking options:
  • https://www.mathnet.ru/eng/al833
  • https://www.mathnet.ru/eng/al/v57/i1/p14
  • This publication is cited in the following 15 articles:
    1. S. Chzhan, L. Su, D. O. Revin, “Primer otnositelno maksimalnoi nepronormalnoi podgruppy nechetnogo poryadka v konechnoi prostoi gruppe”, Sib. matem. zhurn., 65:3 (2024), 596–600  mathnet  crossref
    2. X. Zhang, L. Su, D. O. Revin, “An Example of a Relatively Maximal Nonpronormal Subgroup of Odd Order in a Finite Simple Group”, Sib Math J, 65:3 (2024), 644  crossref
    3. B. Li, D. O. Revin, “Examples of Nonpronormal Relatively Maximal Subgroups of Finite Simple Groups”, Proc. Steklov Inst. Math. (Suppl.), 323, suppl. 1 (2023), S155–S159  mathnet  crossref  crossref  elib
    4. A. V. Zavarnitsine, D. O. Revin, “On π-submaximal subgroups of minimal nonsolvable groups”, Siberian Math. J., 63:5 (2022), 894–902  mathnet  crossref  crossref
    5. Wenbin Guo, Danila O. Revin, Evgeny P. Vdovin, “The reduction theorem for relatively maximal subgroups”, Bull. Math. Sci., 12:01 (2022)  crossref
    6. D. O. Revin, “Submaximal soluble subgroups of odd index in alternating groups”, Siberian Math. J., 62:2 (2021), 313–323  mathnet  crossref  crossref  isi  elib
    7. D. O. Revin, A. V. Zavarnitsine, “Automorphisms of nonsplit extensions of 2-groups by PSL2(q)”, J. Group Theory, 24:6 (2021), 1245–1261  crossref  mathscinet  isi  scopus
    8. D. O. Revin, A. V. Zavarnitsine, “On the behavior of pi-submaximal subgroups under homomorphisms”, Commun. Algebr., 48:2 (2020), 702–707  crossref  mathscinet  zmath  isi  scopus
    9. K. Yu. Korotitskii, D. O. Revin, “Maximal solvable subgroups of odd index in symmetric groups”, Algebra and Logic, 59:2 (2020), 114–128  mathnet  crossref  crossref  isi
    10. Danila O. Revin, Andrei V. Zavarnitsine, “The behavior of π-submaximal subgroups under homomorphisms with π-separable kernels”, Sib. elektron. matem. izv., 17 (2020), 1155–1164  mathnet  crossref
    11. D. Revin, S. Skresanov, A. Vasil'ev, “The wielandt-hartley theorem for submaximal x-subgroups”, Mon.heft. Math., 193:1 (2020), 143–155  crossref  mathscinet  zmath  isi  scopus
    12. D. O. Revin, “Submaximal and epimaximal X-subgroups”, Algebra and Logic, 58:6 (2020), 475–479  mathnet  crossref  crossref  isi
    13. Guo W., Revin D.O., “Classification and Properties of the -Submaximal Subgroups in Minimal Nonsolvable Groups”, Bull. Math. Sci., 8:2 (2018), 325–351  crossref  isi
    14. W. Guo, D. O. Revin, “Conjugacy of maximal and submaximal X-subgroups”, Algebra and Logic, 57:3 (2018), 169–181  mathnet  crossref  crossref  isi
    15. Guo W., Revin D.O., “Pronormality and Submaximal (Sic)-Subgroups on Finite Groups”, Commun. Math. Stat., 6:3, SI (2018), 289–317  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:530
    Full-text PDF :92
    References:97
    First page:14
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025