Abstract:
The spectrum of a finite group is the set of its elements orders. Groups are said to be isospectral if their spectra coincide. For every finite simple exceptional group L=E7(q), we prove that each finite group isospectral to L is isomorphic to a group G squeezed between L and its automorphism group, i.e., L⩽G⩽AutL; in particular, up to isomorphism, there are only finitely many such groups. This assertion, together with a series of previously obtained results, implies that the same is true for every finite simple exceptional group except the group 3D4(2).
Keywords:
finite simple groups, exceptional groups of Lie type, element orders, prime graph, recognition by spectrum.
Citation:
A. V. Vasil'ev, A. M. Staroletov, “Almost recognizability by spectrum of simple exceptional groups of Lie type”, Algebra Logika, 53:6 (2014), 669–692; Algebra and Logic, 53:6 (2015), 433–449
\Bibitem{VasSta14}
\by A.~V.~Vasil'ev, A.~M.~Staroletov
\paper Almost recognizability by spectrum of simple exceptional groups of Lie type
\jour Algebra Logika
\yr 2014
\vol 53
\issue 6
\pages 669--692
\mathnet{http://mi.mathnet.ru/al659}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3408302}
\transl
\jour Algebra and Logic
\yr 2015
\vol 53
\issue 6
\pages 433--449
\crossref{https://doi.org/10.1007/s10469-015-9305-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000350800200001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84924101355}
Linking options:
https://www.mathnet.ru/eng/al659
https://www.mathnet.ru/eng/al/v53/i6/p669
This publication is cited in the following 10 articles:
Maria A. Grechkoseeva, Victor D. Mazurov, Wujie Shi, Andrey V. Vasil'ev, Nanying Yang, “Finite Groups Isospectral to Simple Groups”, Commun. Math. Stat., 11:2 (2023), 169
A. M. Staroletov, “Composition factors of the finite groups isospectral to simple classical groups”, Siberian Math. J., 62:2 (2021), 341–356
Yang N. Grechkoseeva M.A. Vasil'ev A.V., “on the Nilpotency of the Solvable Radical of a Finite Group Isospectral to a Simple Group”, J. Group Theory, 23:3 (2020), 447–470
Yuri V. Lytkin, “On finite groups isospectral to the simple group S4(3)”, Sib. elektron. matem. izv., 16 (2019), 1561–1566
M. A. Grechkoseeva, A. V. Vasil'ev, M. A. Zvezdina, “Recognition of symplectic and orthogonal groups of small dimensions by spectrum”, J. Algebra. Appl., 18:12 (2019), 1950230
Yuri V. Lytkin, “On finite groups isospectral to the simple groups S4(q)”, Sib. elektron. matem. izv., 15 (2018), 570–584
M. A. Grechkoseeva, “On spectra of almost simple extensions of even-dimensional orthogonal groups”, Siberian Math. J., 59:4 (2018), 623–640
Yu. V. Lytkin, “On finite groups isospectral to U3(3)”, Siberian Math. J., 58:4 (2017), 633–643
M. A. Zvezdina, “Spectra of automorphic extensions of finite simple exceptional groups of Lie type”, Algebra and Logic, 55:5 (2016), 354–366
M. A. Grechkoseeva, A. V. Vasil'ev, “On the structure of finite groups isospectral to finite simple groups”, J. Group Theory, 18:5 (2015), 741–759