Loading [MathJax]/jax/output/SVG/config.js
Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2003, Volume 42, Number 1, Pages 51–64 (Mi al17)  

This article is cited in 13 scientific papers (total in 13 papers)

Groups Containing a Self-Centralizing Subgroup of Order 3

V. D. Mazurov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: In 1962 Feit and Thompson obtained a description of finite groups containing a subgroup $X$ of order 3 which coincides with its centralizer. This result is carried over arbitrary groups with the condition that $X$ with every one of its conjugates generate a finite subgroup. We prove the following theorem.
Theorem. Suppose that a group $G$ contains a subgroup $X$ of order $3$ such that $C_G(X)=\langle X\rangle$. If, for every $g\in G$, the subgroup $\langle X,X^g\rangle$ is finite, then one of the following statements holds:
$(1)$ $G=NN_G(X)$ for a periodic nilpotent subgroup $N$ of class $2$, and $NX$ is a Frobenius group with core $N$ and complement $X$.
$(2)$ $G=NA$, where $A$ is isomorphic to $A_5\simeq SL_2(4)$ and $N$ is a normal elementary Abelian $2$-subgroup; here, $N$ is a direct product of order $16$ subgroups normal in $G$ and isomorphic to the natural $SL_2(4)$-module of dimension $2$ over a field of order $4$.
$(3)$ $G$ is isomorphic to $L_2(7)$.
In particular, $G$ is locally finite.
Keywords: group, centralizer, Frobenius group, conjugate subgroup, normal subgroup, nilpotent subgroup, field.
Received: 06.11.2002
English version:
Algebra and Logic, 2003, Volume 42, Issue 1, Pages 29–36
DOI: https://doi.org/10.1023/A:1022676707499
Bibliographic databases:
UDC: 512.542
Language: Russian
Citation: V. D. Mazurov, “Groups Containing a Self-Centralizing Subgroup of Order 3”, Algebra Logika, 42:1 (2003), 51–64; Algebra and Logic, 42:1 (2003), 29–36
Citation in format AMSBIB
\Bibitem{Maz03}
\by V.~D.~Mazurov
\paper Groups Containing a Self-Centralizing Subgroup of Order~3
\jour Algebra Logika
\yr 2003
\vol 42
\issue 1
\pages 51--64
\mathnet{http://mi.mathnet.ru/al17}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1988023}
\zmath{https://zbmath.org/?q=an:1035.20025}
\transl
\jour Algebra and Logic
\yr 2003
\vol 42
\issue 1
\pages 29--36
\crossref{https://doi.org/10.1023/A:1022676707499}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-1842462940}
Linking options:
  • https://www.mathnet.ru/eng/al17
  • https://www.mathnet.ru/eng/al/v42/i1/p51
  • This publication is cited in the following 13 articles:
    1. Yunfei Guan, Quanfu Yan, Zhencai Shen, “The characterization of PSL(2, p ) ( p ≡±5 (mod 24))”, Communications in Algebra, 52:7 (2024), 2769  crossref
    2. Shi Wujie, “Quantitative characterization of finite simple groups”, Sci. Sin.-Math., 53:7 (2023), 931  crossref
    3. Sajjad Mahmood Robati, Zeinab Foruzanfar, “Solvable groups with four conjugacy classes outside a normal subgroup”, Georgian Mathematical Journal, 30:4 (2023), 589  crossref
    4. Sajjad M. Robati, M. R. Darafsheh, “Finite groups with at most six vanishing conjugacy classes”, J. Algebra Appl., 21:04 (2022)  crossref
    5. Dandan Liu, Jinshan Zhang, “Recognition of some finite simple groups by the orders of vanishing elements”, Proc Math Sci, 131:1 (2021)  crossref
    6. Giudici M., Kuzma B., “Realizability Problem For Commuting Graphs”, J. Aust. Math. Soc., 101:3 (2016), 335–355  crossref  mathscinet  zmath  isi  scopus
    7. Jabara E., Lytkina D.V., Mazurov V.D., “Some Groups of Exponent 72”, J. Group Theory, 17:6 (2014), 947–955  crossref  mathscinet  zmath  isi  elib  scopus
    8. Zhang J., Shen Zh., Shi J., “Finite Groups With Few Vanishing Elements”, Glas. Mat., 49:1 (2014), 83–103  crossref  mathscinet  zmath  isi  scopus
    9. Zhang J., Shi J., Shen Zh., “Finite groups whose irreducible characters vanish on at most three conjugacy classes”, Journal of Group Theory, 13:6 (2010), 799–819  crossref  mathscinet  zmath  isi  scopus
    10. Zhang J., Shen Zh., Liu D., “On Zeros of Characters of Finite Groups”, Czechoslovak Mathematical Journal, 60:3 (2010), 801–816  crossref  mathscinet  zmath  isi  elib  scopus
    11. Astill S., Parker Ch., “A 3-Local Characterization of M-12 and SL3(3)”, Archiv der Mathematik, 92:2 (2009), 99–110  crossref  mathscinet  zmath  isi  scopus
    12. Zhang J., Shi W., “Two dual questions on zeros of characters of finite groups”, Journal of Group Theory, 11:5 (2008), 697–708  crossref  mathscinet  zmath  isi  scopus
    13. Mazurov VD, “Characterizations of groups by arithmetic properties”, Algebra Colloquium, 11:1 (2004), 129–140  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:491
    Full-text PDF :110
    References:74
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025