Loading [MathJax]/jax/output/SVG/config.js
Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 1996, Volume 8, Issue 3, Pages 78–103 (Mi aa705)  

This article is cited in 19 scientific papers (total in 19 papers)

Research Papers

Integrable gradient flows and Morse theory

A. P. Veselov, I. A. Dynnikov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Received: 20.06.1995
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. P. Veselov, I. A. Dynnikov, “Integrable gradient flows and Morse theory”, Algebra i Analiz, 8:3 (1996), 78–103; St. Petersburg Math. J., 8:3 (1997), 429–446
Citation in format AMSBIB
\Bibitem{VesDyn96}
\by A.~P.~Veselov, I.~A.~Dynnikov
\paper Integrable gradient flows and Morse theory
\jour Algebra i Analiz
\yr 1996
\vol 8
\issue 3
\pages 78--103
\mathnet{http://mi.mathnet.ru/aa705}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1402289}
\zmath{https://zbmath.org/?q=an:0884.58022|0876.58009}
\transl
\jour St. Petersburg Math. J.
\yr 1997
\vol 8
\issue 3
\pages 429--446
Linking options:
  • https://www.mathnet.ru/eng/aa705
  • https://www.mathnet.ru/eng/aa/v8/i3/p78
  • This publication is cited in the following 19 articles:
    1. Cibotaru D., Pereira W., “Nontame Morse-Smale Flows and Odd Chern-Weil Theory”, Can. J. Math.-J. Can. Math., 2021, PII S0008414X21000353  crossref  isi
    2. M. V. Meshcheryakov, “Classification of taut irreducible real linear representations of compact connected Lie groups”, St. Petersburg Math. J., 32:1 (2021), 31–38  mathnet  crossref  isi  elib
    3. Bozma I H., Gillam W.D., Ozturk F., “Morse-Bott Functions on Orthogonal Groups”, Topology Appl., 265 (2019), UNSP 106807  crossref  isi
    4. Macias-Virgos E., Oprea J., Strom J., Tanre D., “Height Functions on Quaternionic Stiefel Manifolds”, J. Ramanujan Math. Soc., 32:1 (2017), 1–16  mathscinet  isi
    5. Macias-Virgos E., Jose Pereira-Saez M., Tanre D., “Morse Theory and the Lusternik-Schnirelmann Category of Quaternionic Grassmannians”, Proc. Edinb. Math. Soc., 60:2 (2017), 441–449  crossref  mathscinet  zmath  isi  scopus
    6. Cibotaru D., “Vertical flows and a general currential homotopy formula”, Indiana Univ. Math. J., 65:1 (2016), 93–169  crossref  mathscinet  zmath  isi  scopus  scopus
    7. Cibotaru D., “Vertical Morse-Bott-Smale flows and characteristics forms”, Indiana Univ. Math. J., 65:4 (2016), 1089–1135  crossref  mathscinet  zmath  isi  scopus  scopus
    8. Macias-Virgos E., Pereira-Saez M.J., “Height Functions on Compact Symmetric Spaces”, Mon.heft. Math., 177:1 (2015), 119–140  crossref  mathscinet  zmath  isi  scopus  scopus
    9. Mayhew Ch.G., Teel A.R., “Synergistic Hybrid Feedback for Global Rigid-Body Attitude Tracking on So(3)”, IEEE Trans. Autom. Control, 58:11 (2013), 2730–2742  crossref  mathscinet  zmath  isi  scopus  scopus
    10. Mayhew Ch.G., Teel A.R., “Hybrid Control of Rigid-Body Attitude with Synergistic Potential Functions”, 2011 American Control Conference, Proceedings of the American Control Conference, 2011, 287–292  mathscinet  isi
    11. Mayhew Ch.G., Teel A.R., “Synergistic Potential Functions for Hybrid Control of Rigid-Body Attitude”, 2011 American Control Conference, Proceedings of the American Control Conference, 2011, 875–880  isi
    12. Kadzisa H., Mimura M., “Morse-Bott functions and the Lusternik-Schnirelmann category”, J Fixed Point Theory Appl, 10:1 (2011), 63–85  crossref  mathscinet  zmath  isi  scopus  scopus
    13. Gomez-Tato A., Macias-Virgos E., Pereira-Saez M.J., “Trace map, Cayley transform and LS category of Lie groups”, Ann Global Anal Geom, 39:3 (2011), 325–335  crossref  mathscinet  zmath  isi  scopus  scopus
    14. Nicolaescu L.I., “Schubert calculus on the Grassmannian of Hermitian Lagrangian spaces”, Advances in Mathematics, 224:6 (2010), 2361–2434  crossref  mathscinet  zmath  isi  scopus
    15. Ziltener F., “Coisotropic Submanifolds, Leaf-Wise Fixed Points, and Presymplectic Embeddings”, Journal of Symplectic Geometry, 8:1 (2010), 95–118  crossref  mathscinet  zmath  isi  scopus  scopus
    16. Wu R.-B., Chakrabarti R., Rabitz H., “Critical Landscape Topology for Optimization on the Symplectic Group”, Journal of Optimization Theory and Applications, 145:2 (2010), 387–406  crossref  mathscinet  zmath  isi  scopus
    17. Ho, TS, “Landscape of unitary transformations in controlled quantum dynamics”, Physical Review A, 79:1 (2009), 013422  crossref  mathscinet  adsnasa  isi  elib  scopus  scopus
    18. Chaturvedi N.A., McClamroch N.H., Bernstein D.S., “Stabilization of a specified equilibrium of the 3D in the inverted equilibrium manifoldof the 3D pendulum”, 2007 American Control Conference, Vols 1–13, Proceedings of the American Control Conference, 2007, 4526–4531  mathscinet  isi
    19. Volchenko K.Y., Kozachko A.N., “Integrable gradient flows on classical manifolds and Morse theory”, Vestnik Moskovskogo Universiteta Seriya 1 Matematika Mekhanika, 1997, no. 3, 9–15  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:819
    Full-text PDF :444
    References:2
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025