Abstract:
The difference between the fundamental matrix for a second order selfadjoint elliptic system with sufficiently smooth periodic coefficients and the fundamental matrix for the corresponding homogenized system in Rn is shown to decay as O(1+|x|1−n) at infinity, n⩾2. As a consequence, weighted Lp and L∞ estimates are obtained for the difference uε−u0 of the solutions of a system with rapidly oscillating periodic coefficients and the homogenized system in Rn with right-hand side belonging to an appropriate weighted Lp-class in Rn.
Citation:
S. A. Nazarov, “Homogenization of elliptic systems with periodic coefficients: Weighted Lp and L∞ estimates for asymptotic remainders”, Algebra i Analiz, 18:2 (2006), 117–166; St. Petersburg Math. J., 18:2 (2007), 269–304
\Bibitem{Naz06}
\by S.~A.~Nazarov
\paper Homogenization of elliptic systems with periodic coefficients: Weighted $L^p$ and $L^\infty$ estimates for asymptotic remainders
\jour Algebra i Analiz
\yr 2006
\vol 18
\issue 2
\pages 117--166
\mathnet{http://mi.mathnet.ru/aa70}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2244938}
\zmath{https://zbmath.org/?q=an:1135.35016}
\elib{https://elibrary.ru/item.asp?id=9194122}
\transl
\jour St. Petersburg Math. J.
\yr 2007
\vol 18
\issue 2
\pages 269--304
\crossref{https://doi.org/10.1090/S1061-0022-07-00951-X}
Linking options:
https://www.mathnet.ru/eng/aa70
https://www.mathnet.ru/eng/aa/v18/i2/p117
This publication is cited in the following 3 articles:
D. E. Apushkinskaya, A. A. Arkhipova, A. I. Nazarov, V. G. Osmolovskii, N. N. Uraltseva, “A Survey of Results of St. Petersburg State University Research School on Nonlinear Partial Differential Equations. I”, Vestnik St.Petersb. Univ.Math., 57:1 (2024), 1
N. V. Krylov, “Weighted Parabolic Aleksandrov Estimates: PDE and Stochastic Versions”, J Math Sci, 244:3 (2020), 419
G. Cardone, A. Corbo Esposito, S. A. Nazarov, “Homogenization of the mixed boundary value problem for a formally self-adjoint system in a periodically perforated domain”, St. Petersburg Math. J., 21:4 (2010), 601–634