Loading [MathJax]/jax/output/CommonHTML/jax.js
Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2006, Volume 18, Issue 2, Pages 117–166 (Mi aa70)  

This article is cited in 3 scientific papers (total in 3 papers)

Research Papers

Homogenization of elliptic systems with periodic coefficients: Weighted Lp and L estimates for asymptotic remainders

S. A. Nazarov

Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, St. Peterburg
Full-text PDF (451 kB) Citations (3)
References:
Abstract: The difference between the fundamental matrix for a second order selfadjoint elliptic system with sufficiently smooth periodic coefficients and the fundamental matrix for the corresponding homogenized system in Rn is shown to decay as O(1+|x|1n) at infinity, n2. As a consequence, weighted Lp and L estimates are obtained for the difference uεu0 of the solutions of a system with rapidly oscillating periodic coefficients and the homogenized system in Rn with right-hand side belonging to an appropriate weighted Lp-class in Rn.
Received: 01.10.2005
English version:
St. Petersburg Mathematical Journal, 2007, Volume 18, Issue 2, Pages 269–304
DOI: https://doi.org/10.1090/S1061-0022-07-00951-X
Bibliographic databases:
Document Type: Article
MSC: 35J45
Language: Russian
Citation: S. A. Nazarov, “Homogenization of elliptic systems with periodic coefficients: Weighted Lp and L estimates for asymptotic remainders”, Algebra i Analiz, 18:2 (2006), 117–166; St. Petersburg Math. J., 18:2 (2007), 269–304
Citation in format AMSBIB
\Bibitem{Naz06}
\by S.~A.~Nazarov
\paper Homogenization of elliptic systems with periodic coefficients: Weighted $L^p$ and $L^\infty$ estimates for asymptotic remainders
\jour Algebra i Analiz
\yr 2006
\vol 18
\issue 2
\pages 117--166
\mathnet{http://mi.mathnet.ru/aa70}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2244938}
\zmath{https://zbmath.org/?q=an:1135.35016}
\elib{https://elibrary.ru/item.asp?id=9194122}
\transl
\jour St. Petersburg Math. J.
\yr 2007
\vol 18
\issue 2
\pages 269--304
\crossref{https://doi.org/10.1090/S1061-0022-07-00951-X}
Linking options:
  • https://www.mathnet.ru/eng/aa70
  • https://www.mathnet.ru/eng/aa/v18/i2/p117
  • This publication is cited in the following 3 articles:
    1. D. E. Apushkinskaya, A. A. Arkhipova, A. I. Nazarov, V. G. Osmolovskii, N. N. Uraltseva, “A Survey of Results of St. Petersburg State University Research School on Nonlinear Partial Differential Equations. I”, Vestnik St.Petersb. Univ.Math., 57:1 (2024), 1  crossref
    2. N. V. Krylov, “Weighted Parabolic Aleksandrov Estimates: PDE and Stochastic Versions”, J Math Sci, 244:3 (2020), 419  crossref
    3. G. Cardone, A. Corbo Esposito, S. A. Nazarov, “Homogenization of the mixed boundary value problem for a formally self-adjoint system in a periodically perforated domain”, St. Petersburg Math. J., 21:4 (2010), 601–634  mathnet  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:561
    Full-text PDF :164
    References:91
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025