Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2005, Volume 17, Issue 3, Pages 139–159 (Mi aa673)  

This article is cited in 41 scientific papers (total in 41 papers)

Research Papers

Open map theorem for metric spaces

A. Lytchak

Mathematisches Institut, Universität Bonn, Germany
References:
Abstract: An open map theorem for metric spaces is proved and some applications are discussed. The result on the existence of gradient flows of semiconcave functions is generalized to a large class of spaces.
Keywords: semi-convex functions, Aleksandrov spaces, differentials, gradient flow.
Received: 05.04.2004
English version:
St. Petersburg Mathematical Journal, 2006, Volume 17, Issue 3, Pages 477–491
DOI: https://doi.org/10.1090/S1061-0022-06-00916-2
Bibliographic databases:
Document Type: Article
Language: English
Citation: A. Lytchak, “Open map theorem for metric spaces”, Algebra i Analiz, 17:3 (2005), 139–159; St. Petersburg Math. J., 17:3 (2006), 477–491
Citation in format AMSBIB
\Bibitem{Lyt05}
\by A.~Lytchak
\paper Open map theorem for metric spaces
\jour Algebra i Analiz
\yr 2005
\vol 17
\issue 3
\pages 139--159
\mathnet{http://mi.mathnet.ru/aa673}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2167848}
\zmath{https://zbmath.org/?q=an:1152.53033}
\elib{https://elibrary.ru/item.asp?id=9175121}
\transl
\jour St. Petersburg Math. J.
\yr 2006
\vol 17
\issue 3
\pages 477--491
\crossref{https://doi.org/10.1090/S1061-0022-06-00916-2}
Linking options:
  • https://www.mathnet.ru/eng/aa673
  • https://www.mathnet.ru/eng/aa/v17/i3/p139
  • This publication is cited in the following 41 articles:
    1. Karl-Theodor Sturm, “The Space of Spaces: Curvature Bounds and Gradient Flows on the Space of Metric Measure Spaces”, Memoirs of the AMS, 290:1443 (2023)  crossref
    2. Yin Jiang, “Non-existence of concave functions on certain metric spaces”, Proc. Amer. Math. Soc., 2023  crossref
    3. Tadashi Fujioka, “Extremal subsets in geodesically complete spaces with curvature bounded above”, Analysis and Geometry in Metric Spaces, 11:1 (2023)  crossref
    4. Nagano K., “Asymptotic Topological Regularity of Cat(0) Spaces”, Ann. Glob. Anal. Geom., 61:2 (2022), 427–457  crossref  mathscinet  isi
    5. Peter Petersen, CIMAT Lectures in Mathematical Sciences, Recent Advances in Alexandrov Geometry, 2022, 1  crossref
    6. Tadashi Fujioka, “Noncritical maps on geodesically complete spaces with curvature bounded above”, Ann Glob Anal Geom, 62:3 (2022), 661  crossref
    7. Tadashi FUJIOKA, “Regular points of extremal subsets in Alexandrov spaces”, J. Math. Soc. Japan, 74:4 (2022)  crossref
    8. Moon Duchin, Tom Needham, Thomas Weighill, “The (homological) persistence of gerrymandering”, FoDS, 4:4 (2022), 581  crossref
    9. Stadler S., “The Structure of Minimal Surfaces in Cat(0) Spaces”, J. Eur. Math. Soc., 23:11 (2021), 3521–3554  crossref  mathscinet  isi
    10. Kapovitch V., Lytchak A., “Remarks on Manifolds With Two-Sided Curvature Bounds”, Anal. Geom. Metr. Spaces, 9:1 (2021), 53–64  crossref  mathscinet  isi  scopus
    11. Lebedeva N., Ohta Sh.-i., Zolotov V., “Self-Contracted Curves in Spaces With Weak Lower Curvature Bound”, Int. Math. Res. Notices, 2021:11 (2021), 8623–8656  crossref  mathscinet  isi
    12. Lytchak A., Petrunin A., “Short Retractions of Cat(1) Spaces”, Proc. Amer. Math. Soc., 149:3 (2021), 1247–1257  crossref  mathscinet  isi  scopus
    13. Gigli N. Nobili F., “A Differential Perspective on Gradient Flows on Cat(Kappa)-Spaces and Applications”, J. Geom. Anal., 31:12 (2021), 11780–11818  crossref  mathscinet  isi
    14. Lange Ch., “Orbifolds From a Metric Viewpoint”, Geod. Dedic., 209:1 (2020), 43–57  crossref  mathscinet  isi
    15. Lytchak A., Stadler S., “Improvements of Upper Curvature Bounds”, Trans. Am. Math. Soc., 373:10 (2020), 7153–7166  crossref  mathscinet  isi  scopus
    16. Muratori M., Savar G., “Gradient Flows and Evolution Variational Inequalities in Metric Spaces. i: Structural Properties”, J. Funct. Anal., 278:4 (2020), UNSP 108347  crossref  mathscinet  isi
    17. Ohta Sh.-i., “Self-Contracted Curves in Cat(0)-Spaces and Their Rectifiability”, J. Geom. Anal., 30:1 (2020), 936–967  crossref  mathscinet  isi  scopus
    18. Kell M., “Sectional Curvature-Type Conditions on Metric Spaces”, J. Geom. Anal., 29:1 (2019), 616–655  crossref  mathscinet  zmath  isi  scopus
    19. Lytchak A. Nagano K., “Geodesically Complete Spaces With An Upper Curvature Bound”, Geom. Funct. Anal., 29:1 (2019), 295–342  crossref  mathscinet  zmath  isi  scopus
    20. Karl-Theodor Sturm, “Gradient flows for semiconvex functions on metric measure spaces – existence, uniqueness, and Lipschitz continuity”, Proc. Amer. Math. Soc., 146:9 (2018), 3985  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:599
    Full-text PDF :260
    References:63
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025