Abstract:
An open map theorem for metric spaces is proved and some applications are discussed. The result on the existence of gradient flows of semiconcave functions is generalized to a large class of spaces.
\Bibitem{Lyt05}
\by A.~Lytchak
\paper Open map theorem for metric spaces
\jour Algebra i Analiz
\yr 2005
\vol 17
\issue 3
\pages 139--159
\mathnet{http://mi.mathnet.ru/aa673}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2167848}
\zmath{https://zbmath.org/?q=an:1152.53033}
\elib{https://elibrary.ru/item.asp?id=9175121}
\transl
\jour St. Petersburg Math. J.
\yr 2006
\vol 17
\issue 3
\pages 477--491
\crossref{https://doi.org/10.1090/S1061-0022-06-00916-2}
Linking options:
https://www.mathnet.ru/eng/aa673
https://www.mathnet.ru/eng/aa/v17/i3/p139
This publication is cited in the following 41 articles:
Karl-Theodor Sturm, “The Space of Spaces: Curvature Bounds and Gradient Flows on the Space of Metric Measure Spaces”, Memoirs of the AMS, 290:1443 (2023)
Yin Jiang, “Non-existence of concave functions on certain metric spaces”, Proc. Amer. Math. Soc., 2023
Tadashi Fujioka, “Extremal subsets in geodesically complete spaces with curvature bounded above”, Analysis and Geometry in Metric Spaces, 11:1 (2023)
Nagano K., “Asymptotic Topological Regularity of Cat(0) Spaces”, Ann. Glob. Anal. Geom., 61:2 (2022), 427–457
Peter Petersen, CIMAT Lectures in Mathematical Sciences, Recent Advances in Alexandrov Geometry, 2022, 1
Tadashi Fujioka, “Noncritical maps on geodesically complete spaces with curvature bounded above”, Ann Glob Anal Geom, 62:3 (2022), 661
Tadashi FUJIOKA, “Regular points of extremal subsets in Alexandrov spaces”, J. Math. Soc. Japan, 74:4 (2022)
Moon Duchin, Tom Needham, Thomas Weighill, “The (homological) persistence of gerrymandering”, FoDS, 4:4 (2022), 581
Stadler S., “The Structure of Minimal Surfaces in Cat(0) Spaces”, J. Eur. Math. Soc., 23:11 (2021), 3521–3554
Kapovitch V., Lytchak A., “Remarks on Manifolds With Two-Sided Curvature Bounds”, Anal. Geom. Metr. Spaces, 9:1 (2021), 53–64