Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2006, Volume 18, Issue 1, Pages 162–186 (Mi aa64)  

This article is cited in 13 scientific papers (total in 13 papers)

Research Papers

Construction of spherical cubature formulas using lattices

P. de la Harpea, C. Pachea, B. Venkovb

a Section de Mathématiques, Université de Genève, Genève, Switzerland
b Petersburg Department of Steklov Institute of Mathematics, St. Petersburg, Russia
References:
Abstract: We construct cubature formulas on spheres supported by homothetic images of shells in some Euclidean lattices. Our analysis of these cubature formulas uses results from the theory of modular forms. Examples are worked out on Sn1 for n=4, 8, 12, 14, 16, 20, 23, and 24, and the sizes of the cubature formulas we obtain are compared with the lower bounds given by Linear Programming.
Received: 03.06.2005
English version:
St. Petersburg Mathematical Journal, 2007, Volume 18, Issue 1, Pages 119–139
DOI: https://doi.org/10.1090/S1061-0022-07-00946-6
Bibliographic databases:
Document Type: Article
MSC: Primary 65D32, 05B30; Secondary 11F11, 11H06
Language: English
Citation: P. de la Harpe, C. Pache, B. Venkov, “Construction of spherical cubature formulas using lattices”, Algebra i Analiz, 18:1 (2006), 162–186; St. Petersburg Math. J., 18:1 (2007), 119–139
Citation in format AMSBIB
\Bibitem{De PacVen06}
\by P.~de la Harpe, C.~Pache, B.~Venkov
\paper Construction of spherical cubature formulas using lattices
\jour Algebra i Analiz
\yr 2006
\vol 18
\issue 1
\pages 162--186
\mathnet{http://mi.mathnet.ru/aa64}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2225217}
\zmath{https://zbmath.org/?q=an:1122.65028}
\elib{https://elibrary.ru/item.asp?id=9212603}
\transl
\jour St. Petersburg Math. J.
\yr 2007
\vol 18
\issue 1
\pages 119--139
\crossref{https://doi.org/10.1090/S1061-0022-07-00946-6}
Linking options:
  • https://www.mathnet.ru/eng/aa64
  • https://www.mathnet.ru/eng/aa/v18/i1/p162
  • This publication is cited in the following 13 articles:
    1. Masatake Hirao, Hiroshi Nozaki, Koji Tasaka, “Spherical designs and modular forms of the $D_4$ lattice”, Res. number theory, 9:4 (2023)  crossref
    2. Hakova L., Hrivnak J., Motlochova L., “on Cubature Rules Associated to Weyl Group Orbit Functions”, Acta Polytech., 56:3 (2016), 202–213  crossref  isi  elib  scopus
    3. Sawa M., Xu Yu., “On Positive Cubature Rules on the Simplex and Isometric Embeddings”, Math. Comput., 83:287 (2014), 1251–1277  crossref  mathscinet  zmath  isi  scopus
    4. St. Petersburg Math. J., 25:4 (2014), 615–646  mathnet  crossref  mathscinet  zmath  isi  elib
    5. Eiichi Bannai, Tsuyoshi Miezaki, Developments in Mathematics, 31, Quadratic and Higher Degree Forms, 2013, 1  crossref
    6. E. Bannai, Ts. Miezaki, V. A. Yudin, “An elementary approach to toy models for D. H. Lehmer's conjecture”, Izv. Math., 75:6 (2011), 1093–1106  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    7. Bannai E., Bannaia E., Hiraob M., Sawab M., “Cubature formulas in numerical analysis and Euclidean tight designs”, European J. Combin., 31:2 (2010), 423–441  crossref  mathscinet  zmath  isi  scopus
    8. Bondarenko A.V., Viazovska M.S., “Spherical designs via Brouwer fixed point theorem”, SIAM J. Discrete Math., 24:1 (2010), 207–217  crossref  mathscinet  zmath  isi  elib  scopus
    9. Bannai E., Miezaki Ts., “Toy models for D. H. Lehmer's conjecture”, J Math Soc Japan, 62:3 (2010), 687–705  crossref  mathscinet  zmath  isi  scopus
    10. V. A. Yudin, “Invariants and Chebyshev polynomials”, Proc. Steklov Inst. Math. (Suppl.), 265, suppl. 1 (2009), S227–S245  mathnet  crossref  isi  elib
    11. Bannai E., Bannai E., “A survey on spherical designs and algebraic combinatorics on spheres”, European J. Combin., 30:6 (2009), 1392–1425  crossref  mathscinet  zmath  isi  elib  scopus
    12. Bondarenko A. V., Viazovska M. S., “New asymptotic estimates for spherical designs”, J. Approx. Theory, 152:1 (2008), 101–106  crossref  mathscinet  zmath  isi  elib  scopus
    13. Scott A. J., “Optimizing quantum process tomography with unitary 2-designs”, J. Phys. A, 41:5 (2008), 055308, 26 pp.  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:666
    Full-text PDF :185
    References:72
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025