Abstract:
The method of phase-amplitude transformations is used for extraction of harmonics τμ of a given order μ from trigonometric polynomials Tn(t)=n∑k=1τk(t),τk(t):=akcoskt+bksinkt. Such transformations take polynomials Tn(t) to similar polynomials by using two simplest operations: multiplication by a real constant X and shift by a real phase λ, i.e., Tn(t)→X⋅Tn(t−λ). The harmonic τμ is extracted by addition of similar polynomials: τμ(t)=m∑k=1Xk⋅Tn(t−λk),m⩽n, where the Xk and λk are defined by explicit formulas. Similar formulas for harmonics are obtained on a fairly large class of convergent trigonometric series. This representation yields sharp estimates of Fejér type for harmonics and coefficients of the polynomial Tn.
Keywords:
discrete moment problem, Prony method, regularization.
Citation:
D. G. Vasilchenkova, V. I. Danchenko, “Extraction of harmonics from trigonometric polynomials by phase-amplitude operators”, Algebra i Analiz, 32:2 (2020), 21–44; St. Petersburg Math. J., 32:2 (2021), 215–232
\Bibitem{VasDan20}
\by D.~G.~Vasilchenkova, V.~I.~Danchenko
\paper Extraction of harmonics from trigonometric polynomials by phase-amplitude operators
\jour Algebra i Analiz
\yr 2020
\vol 32
\issue 2
\pages 21--44
\mathnet{http://mi.mathnet.ru/aa1696}
\elib{https://elibrary.ru/item.asp?id=46757762}
\transl
\jour St. Petersburg Math. J.
\yr 2021
\vol 32
\issue 2
\pages 215--232
\crossref{https://doi.org/10.1090/spmj/1645}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000626332600002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85102847602}
Linking options:
https://www.mathnet.ru/eng/aa1696
https://www.mathnet.ru/eng/aa/v32/i2/p21
This publication is cited in the following 4 articles:
V. I. Danchenko, D. G. Chkalova, “Bernstein-type estimates for the derivatives of trigonometric polynomials”, Probl. anal. Issues Anal., 10(28):3 (2021), 31–40
V. I. Danchenko, D. G. Chkalova, “Algebraic Analogs of Fejer Inequalities”, J Math Sci, 255:5 (2021), 601
D G Chkalova, “Time series forecasting using amplitude-frequency analysis of STL components”, J. Phys.: Conf. Ser., 2094:3 (2021), 032019
D. G. Vasilchenkova, V. I. Danchenko, “Extraction of Several Harmonics from Trigonometric Polynomials. Fejér-Type Inequalities”, Proc. Steklov Inst. Math., 308 (2020), 92–106