Citation:
M. I. Belishev, A. L. Pestov, “Characterization of inverse data for one-dimensional two-velocity dynamical system”, Algebra i Analiz, 26:3 (2014), 89–130; St. Petersburg Math. J., 26:3 (2015), 411–440
\Bibitem{BelPes14}
\by M.~I.~Belishev, A.~L.~Pestov
\paper Characterization of inverse data for one-dimensional two-velocity dynamical system
\jour Algebra i Analiz
\yr 2014
\vol 26
\issue 3
\pages 89--130
\mathnet{http://mi.mathnet.ru/aa1385}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3289178}
\elib{https://elibrary.ru/item.asp?id=22834087}
\transl
\jour St. Petersburg Math. J.
\yr 2015
\vol 26
\issue 3
\pages 411--440
\crossref{https://doi.org/10.1090/S1061-0022-2015-01344-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000357043800002}
Linking options:
https://www.mathnet.ru/eng/aa1385
https://www.mathnet.ru/eng/aa/v26/i3/p89
This publication is cited in the following 7 articles:
M. I. Belishev, T. Sh. Khabibullin, “Data Characterization in Dynamical Inverse Problem for the 1D Wave Equation with Matrix Potential”, J Math Sci, 277:4 (2023), 506
Guo B.-Zh., Ivanov S.A., “Finite Dimensional Control of Multichannel Systems”, J. Differ. Equ., 296 (2021), 213–241
M. I. Belishev, T. Sh. Khabibullin, “Kharakterizatsiya dannykh dinamicheskoi obratnoi zadachi dlya odnomernogo volnovogo uravneniya s matrichnym potentsialom”, Matematicheskie voprosy teorii rasprostraneniya voln. 50, Posvyaschaetsya devyanostoletiyu Vasiliya Mikhailovicha BABIChA, Zap. nauchn. sem. POMI, 493, POMI, SPb., 2020, 48–72
A. Mikhaylov, V. Mikhaylov, “Dynamic inverse problem for Jacobi matrices”, Inverse Probl. Imaging, 13:3 (2019), 431–447
S. A. Ivanov, J. M. Wang, “Controllability of a multichannel system”, J. Differ. Equ., 264:4 (2018), 2538–2552
M. I. Belishev, “Boundary control and tomography of Riemannian manifolds (the BC-method)”, Russian Math. Surveys, 72:4 (2017), 581–644
A. L. Pestov, “On an inverse problem for a one-dimensional two-velocity dynamical system”, J. Math. Sci. (N. Y.), 214:3 (2016), 344–371