Loading [MathJax]/jax/output/CommonHTML/jax.js
Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2010, Volume 22, Issue 1, Pages 57–74 (Mi aa1170)  

This article is cited in 6 scientific papers (total in 6 papers)

Research Papers

Lp-bounded point evaluations for polynomials and uniform rational approximation

J. E. Brennan, E. R. Militzer

Department of Mathematics, University of Kentucky, Lexington, KY
Full-text PDF (289 kB) Citations (6)
References:
Abstract: A connection is established between uniform rational approximation, and approximation in the mean by polynomials on compact nowhere dense subsets of the complex plane C. Peak points for R(X) and bounded point evaluations for Hp(X,dA), 1p<, play a fundamental role.
Keywords: polynomial and rational approximation, capacity, peak points, point evaluations.
Received: 19.11.2009
English version:
St. Petersburg Mathematical Journal, 2011, Volume 22, Issue 1, Pages 41–53
DOI: https://doi.org/10.1090/S1061-0022-2010-01131-2
Bibliographic databases:
Document Type: Article
MSC: 30E10
Language: English
Citation: J. E. Brennan, E. R. Militzer, “Lp-bounded point evaluations for polynomials and uniform rational approximation”, Algebra i Analiz, 22:1 (2010), 57–74; St. Petersburg Math. J., 22:1 (2011), 41–53
Citation in format AMSBIB
\Bibitem{BreMil10}
\by J.~E.~Brennan, E.~R.~Militzer
\paper $L^p$-bounded point evaluations for polynomials and uniform rational approximation
\jour Algebra i Analiz
\yr 2010
\vol 22
\issue 1
\pages 57--74
\mathnet{http://mi.mathnet.ru/aa1170}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2641080}
\zmath{https://zbmath.org/?q=an:1211.30050}
\elib{https://elibrary.ru/item.asp?id=20730040}
\transl
\jour St. Petersburg Math. J.
\yr 2011
\vol 22
\issue 1
\pages 41--53
\crossref{https://doi.org/10.1090/S1061-0022-2010-01131-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000286864400002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871398096}
Linking options:
  • https://www.mathnet.ru/eng/aa1170
  • https://www.mathnet.ru/eng/aa/v22/i1/p57
  • This publication is cited in the following 6 articles:
    1. Yang L., “Bounded Point Evaluations For Certain Polynomial and Rational Modules”, J. Math. Anal. Appl., 474:1 (2019), 219–241  crossref  mathscinet  zmath  isi  scopus
    2. Yang L., “Spectral Picture For Rationally Multicyclic Subnormal Operators”, Banach J. Math. Anal., 13:1 (2019), 151–173  crossref  mathscinet  isi  scopus
    3. Yang L., “Bounded Point Evaluations For Rationally Multicyclic Subnormal Operators”, J. Math. Anal. Appl., 458:2 (2018), 1059–1072  crossref  mathscinet  zmath  isi  scopus
    4. Yang L., “A note on $L^p$-bounded point evaluations for polynomials”, Proc. Amer. Math. Soc., 144:11 (2016), 4943–4948  crossref  mathscinet  zmath  isi  scopus
    5. Brennan J.E., “Absolutely Continuous Representing Measures For $R(X)$”, Bull. London Math. Soc., 46:6 (2014), 1133–1144  crossref  mathscinet  zmath  isi
    6. J. E. Brennan, C. N. Mattingly, “Approximation by rational functions on compact nowhere dense subsets of the complex plane”, Anal.Math.Phys., 3:3 (2013), 201  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:478
    Full-text PDF :127
    References:68
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025