Abstract:
Let Ω0Ω0 be an ellipsoidal inclusion in the Euclidean space Rn. It is checked that if a solution of the homogeneous transmission problem for a formally selfadjoint elliptic system of second order differential equations with piecewise smooth coefficients grows linearly at infinity, then this solution is a linear vector-valued function in the interior of Ω0. This fact generalizes the classical Eshelby theorem in elasticity theory and makes it possible to indicate simple and explicit formulas for the polarization matrix of the inclusion in the composite space, as well as to solve a problem about optimal patching of an elliptical hole.
Citation:
S. A. Nazarov, “The Eshelby theorem and the problem on optimal patch”, Algebra i Analiz, 21:5 (2009), 155–195; St. Petersburg Math. J., 21:5 (2010), 791–818
\Bibitem{Naz09}
\by S.~A.~Nazarov
\paper The Eshelby theorem and the problem on optimal patch
\jour Algebra i Analiz
\yr 2009
\vol 21
\issue 5
\pages 155--195
\mathnet{http://mi.mathnet.ru/aa1157}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2604567}
\zmath{https://zbmath.org/?q=an:1204.35085}
\transl
\jour St. Petersburg Math. J.
\yr 2010
\vol 21
\issue 5
\pages 791--818
\crossref{https://doi.org/10.1090/S1061-0022-2010-01118-X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000282186800008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84861627507}
Linking options:
https://www.mathnet.ru/eng/aa1157
https://www.mathnet.ru/eng/aa/v21/i5/p155
This publication is cited in the following 7 articles:
Novotny A.A., Sokolowski J., Zochowski A., “Topological Derivatives of Shape Functionals. Part i: Theory in Singularly Perturbed Geometrical Domains”, J. Optim. Theory Appl., 180:2 (2019), 341–373
Freidin A.B., Kucher V.A., “Solvability of the Equivalent Inclusion Problem For An Ellipsoidal Inhomogeneity”, Math. Mech. Solids, 21:2, SI (2016), 255–262
Leugering G., Nazarov S.A., “The Eshelby Theorem and Its Variants For Piezoelectric Media”, Arch. Ration. Mech. Anal., 215:3 (2015), 707–739
Schury F., Greifenstein J., Leugering G., Stingl M., “on the Efficient Solution of a Patch Problem With Multiple Elliptic Inclusions”, Optim. Eng., 16:1 (2015), 225–246
Schneider M., Andrae H., “The Topological Gradient in Anisotropic Elasticity With An Eye Towards Lightweight Design”, Math. Meth. Appl. Sci., 37:11 (2014), 1624–1641
Gryshchuk S., de Cristoforis M.L., “Simple Eigenvalues For the Steklov Problem in a Domain With a Small Hole. a Functional Analytic Approach”, Math. Meth. Appl. Sci., 37:12 (2014), 1755–1771
Leugering G. Nazarov S. Schury F. Stingl M., “The Eshelby theorem and application to the optimization of an elastic patch”, SIAM J. Appl. Math., 72:2 (2012), 512–534