Аннотация:
We consider two popular function spaces: the Morrey spaces and the Nikol'skii spaces and investigate the relationship between them in the one-dimensional case. In particular, we prove that, under the appropriate assumptions on the numerical parameters, their restrictions to the class of functions f of the form f(x)=g(|x|), where g is a non-negative non-increasing function on [0,∞), coincide.
Ключевые слова и фразы:
Morrey spaces, Nikol'skii spaces.
Grant of the 1st Azerbaijan-Russia Joint Grant Competition
EIF-BGM-4-RFTF-1/2017-21/01/1-M-08
The research of V.I. Burenkov and T.V. Tararykova was supported by the Russian Foundation for Basic Research (project no. 18-51-06005). The research of V.S. Guliyev was supported by the grant of the 1st Azerbaijan-Russia Joint Grant Competition (grant no. EIF-BGM-4-RFTF-1/2017-21/01/1-M-08).
Образец цитирования:
V. I. Burenkov, V. S. Guliyev, T. V. Tararykova, “Comparison of Morrey spaces and Nikol'skii spaces”, Eurasian Math. J., 12:1 (2021), 9–20
\RBibitem{BurGulTar21}
\by V.~I.~Burenkov, V.~S.~Guliyev, T.~V.~Tararykova
\paper Comparison of Morrey spaces and Nikol'skii spaces
\jour Eurasian Math. J.
\yr 2021
\vol 12
\issue 1
\pages 9--20
\mathnet{http://mi.mathnet.ru/emj388}
\crossref{https://doi.org/10.32523/2077-9879-2021-12-1-09-20}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000647563900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85104033421}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/emj388
https://www.mathnet.ru/rus/emj/v12/i1/p9
Эта публикация цитируется в следующих 5 статьяx:
V. I. Burenkov, A. Senouci, “Equivalent semi-norms for Nikol'skii–Besov spaces”, Eurasian Math. J., 14:4 (2023), 15–22
M. A. Senouci, “Boundedness of the generalized Riemann–Liouville operator in local Morrey-type spaces”, Eurasian Math. J., 14:4 (2023), 63–68
В. И. Буренков, Д. Дж. Джосеф, “Интегральные неравенства для целых функций экспоненциального типа в пространствах Морри”, Теория функций многих действительных переменных и ее приложения, Сборник статей. К 90-летию члена-корреспондента РАН Олега Владимировича Бесова, Труды МИАН, 323, МИАН, М., 2023, 87–106; V. I. Burenkov, D. J. Joseph, “Integral Inequalities for Entire Functions of Exponential Type in Morrey Spaces”, Proc. Steklov Inst. Math., 323 (2023), 81–100
Bo Li, Tianjun Shen, Jian Tan, Aiting Wang, “On the Dirichlet problem for the Schrödinger equation in the upper half-space”, Anal.Math.Phys., 13:6 (2023)
V. I. Burenkov, M. A. Senouci, “Boundedness of the generalized Riesz potential in local Morrey type spaces”, Eurasian Math. J., 12:4 (2021), 92–98