Аннотация:
Рассматриваются отображения множества слов в конечном алфавите в себя. Описаны инъективные отображения, не размножающие искажений типа замены букв в словах, биективные отображения, не размножающие искажений типа пропуска букв,и инъективные отображения, не размножающие искажений обоих указанных типов.
Статья поступила: 23.10.1996
Реферативные базы данных:
УДК:519.7
Образец цитирования:
А. В. Бабаш, М. М. Глухов, Г. П. Шанкин, “О преобразованиях множества слов в конечном алфавите, не размножающих искажений”, Дискрет. матем., 9:3 (1997), 3–19; Discrete Math. Appl., 7:5 (1997), 437–454
“Глухов Михаил Михайлович (20.11.1930 – 09.12.2018)”, Дискрет. матем., 31:1 (2019), 3–6
А. В. Бабаш, “Автоматные отображения слов, размножающие искажения в метриках Хемминга и Левенштейна не более, чем в K раз”, Дискрет. матем., 14:3 (2002), 78–94; A. V. Babash, “Automaton mappings of words that propagate distortions in Hamming and Levenshteĭn metrics no more than K times”, Discrete Math. Appl., 12:4 (2002), 375–392
Glukhov M.M., “Injective mappings of words which do not multiply symbol skip and insertion errors”, Probabilistic Methods in Discrete Mathematics, 2002, 1–7
А. В. Бабаш, “Автоматные отображения периодических последовательностей, не размножающие искажений”, Дискрет. матем., 13:3 (2001), 42–56; A. V. Babash, “Automaton mappings of periodic sequences that do not propagate distortions”, Discrete Math. Appl., 11:4 (2001), 357–372