Аннотация:
Обосновываются первые алгоритмы с константными оценками точности для серии асимметричных постановок задач маршрутизации: задачи о штейнеровском цикле, задачи коммивояжера с призами, задачи о покрытии графа ограниченным числом циклов и др. В большинстве своем предложенные алгоритмы опираются на оригинальные схемы сведения исследуемых постановок к вспомогательным постановкам асимметричной задачи коммивояжера и прорывные результаты О. Свенссона, Я. Тарнавски, Л. Вега и В. Трауб, Й. Вигена в области эффективной аппроксимируемости данной задачи. Алгоритм для задачи о покрытии графа ограниченным числом циклов опирается на технику, связанную с более глубокой модификацией подхода Свенссона–Трауб.
Ключевые слова:
асимметричная задача коммивояжера, приближенные алгоритмы, константная оценка точности, задача о штейнеровском цикле минимального веса, задача маршрутизации транспорта, задача о покрытии графа ограниченным числом циклов.
Образец цитирования:
Е. Д. Незнахина, Ю. Ю. Огородников, К. В. Рыженко, М. Ю. Хачай, “Приближенные алгоритмы с фиксированными оценками точности для серии асимметричных задач маршрутизации”, Докл. РАН. Матем., информ., проц. упр., 514:1 (2023), 89–97; Dokl. Math., 108:3 (2023), 499–505