Аннотация:
Известно, что всякий плоский граф ациклически 5-раскрашиваем (О. В. Бородин, 1976), причем эта оценка неулучшаема. Получен также ряд достаточных условий ациклической 4-раскрашиваемости. В частности, ациклическая 4-раскрашиваемость доказана для следующих плоских графов: не содержащих 3- и 4-циклов (О. В. Бородин, А. В. Косточка и Вудал, 1999), без циклов длины 4, 5 и 6 (Монтасьер, Распо и Ванг, 2006), без 4-, 6- и 7-циклов, а также без циклов длины 4, 6 и 8 (Чен, Распо и Ванг, 2009).
В данной работе доказано, что всякий плоский граф, не содержащий 4- и 6-циклов, ациклически 4-раскрашиваем. Библиогр. 17.
Образец цитирования:
О. В. Бородин, “Ациклическая 4-раскрашиваемость плоских графов без циклов длины 4 и 6”, Дискретн. анализ и исслед. опер., 16:6 (2009), 3–11; J. Appl. Industr. Math., 4:4 (2010), 490–495
Zhu E., Li Z., Shao Z., Xu J., “On Acyclically 4-Colorable Maximal Planar Graphs”, Appl. Math. Comput., 329 (2018), 402–407
Borodin O.V., Ivanova A.O., “Acyclic 4-Choosability of Planar Graphs with No 4- and 5-Cycles”, J. Graph Theory, 72:4 (2013), 374–397
Chen M., Raspaud A., “Planar Graphs Without 4-and 5-Cycles Are Acyclically 4-Choosable”, Discrete Appl. Math., 161:7-8 (2013), 921–931
Borodin O.V., Ivanova A.O., “Acyclic 4-Choosability of Planar Graphs Without Adjacent Short Cycles”, Discrete Math., 312:22 (2012), 3335–3341
Chen M., Raspaud A., “A Sufficient Condition for Planar Graphs to Be Acyclically 5-Choosable”, J. Graph Theory, 70:2 (2012), 135–151
Chen Min, Raspaud A., Roussel N., Zhu Xuding, “Acyclic 4-choosability of planar graphs”, Discrete Math., 311:1 (2011), 92–101
О. В. Бородин, А. О. Иванова, “Ациклическая предписанная 5-раскрашиваемость плоских графов без 4-циклов”, Сиб. матем. журн., 52:3 (2011), 522–541; O. V. Borodin, A. O. Ivanova, “Acyclic 5-choosability of planar graphs without 4-cycles”, Siberian Math. J., 52:3 (2011), 411–425
Borodin O.V., Ivanova A.O., “Acyclic 5-choosability of planar graphs without adjacent short cycles”, J. Graph Theory, 68:2 (2011), 169–176
О. В. Бородин, “Ациклическая 4-раскрашиваемость плоских графов, не содержащих 4- и 5-циклов”, Дискретн. анализ и исслед. опер., 17:2 (2010), 20–38; O. V. Borodin, “Acyclic 4-colorability of planar graphs without 4- and 5-cycles”, J. Appl. Industr. Math., 5:1 (2011), 31–43
O. V. Borodin, A. O. Ivanova, “Acyclic 3-choosability of planar graphs with no cycles of length from 4 to 11”, Сиб. электрон. матем. изв., 7 (2010), 275–283
Borodin O.V., Ivanova A.O., Raspaud A., “Acyclic 4-choosability of planar graphs with neither 4-cycles nor triangular 6-cycles”, Discrete Math., 310:21 (2010), 2946–2950
Chen Min, Raspaud A., “On acyclic 4-choosability of planar graphs without short cycles”, Discrete Math., 310:15–16 (2010), 2113–2118