Аннотация:
Для изучения нелинейных эффектов взаимодействия биологических видов развивается численно-аналитический подход, основанный на теории косимметрии, объясняющей явление возникновения непрерывных семейств решений дифференциальных уравнений, когда каждое решение может быть реализовано из соответствующего бассейна начальных данных. В задачах математической экологии возникновение косимметрии обычно связано с выполнением ряда соотношений между параметрами системы. При нарушении этих соотношений происходит разрушение семейств, когда вместо континуума решений возникает конечное число изолированных решений, а процесс установления может занимать большое время. При этом динамический процесс происходит в окрестности семейства, исчезнувшего в результате разрушения косимметрии.
Рассматривается модель пространственно-временной конкуренции хищников и жертв с учетом направленной миграции, функционального отклика Холлинга типа II и нелинейной функции роста жертв, допускающей эффект Олли. Найдены условия на параметры системы, при которых существует линейная по плотностям популяций косимметрия. Показано, что косимметричность не зависит от вида функции ресурса в случае неоднородного ареала. Для расчета стационарных решений и колебательных режимов и случая пространственной неоднородности применяется вычислительный эксперимент в среде MATLAB.
Рассмотрены важные случаи взаимодействия трех популяций (жертва и два хищника, две жертвы и хищник). В случае однородного ареала исследованы возникновение семейств стационарных распределений и ответвление предельных циклов от теряющих устойчивость равновесий семейства. Для системы двух жертв и хищника обнаружены области параметров, при которых реализуются три семейства устойчивых решений: сосуществование двух жертв без хищника, стационарные и колебательные распределения трех сосуществующих видов. В численном эксперименте проанализировано разрушение косимметриии установлено долгое установление, приводящее к решениям с вытеснением одной из жертв или вымиранием хищника.
Ключевые слова:
математическая экология, теория косимметрии, сосуществование конкурентов, хищник – жертва, функциональный отклик Холлинга, эффект Олли.
Работа выполнена при поддержке гранта РФФИ № 15-01-20812.
Поступила в редакцию: 22.05.2017 Исправленный вариант: 21.08.2017 Принята в печать: 20.09.2017
Тип публикации:
Статья
УДК:
504.74.052:519.63
Образец цитирования:
А. В. Епифанов, В. Г. Цибулин, “О динамике косимметричных систем хищников и жертв”, Компьютерные исследования и моделирование, 9:5 (2017), 799–813
\RBibitem{EpiTsy17}
\by А.~В.~Епифанов, В.~Г.~Цибулин
\paper О динамике косимметричных систем хищников и жертв
\jour Компьютерные исследования и моделирование
\yr 2017
\vol 9
\issue 5
\pages 799--813
\mathnet{http://mi.mathnet.ru/crm100}
\crossref{https://doi.org/10.20537/2076-7633-2017-9-5-799-813}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/crm100
https://www.mathnet.ru/rus/crm/v9/i5/p799
Эта публикация цитируется в следующих 12 статьяx:
А. В. Епифанов, В. Г. Цибулин, “Математическая модель идеального распределения родственных популяций на неоднородном ареале”, Владикавк. матем. журн., 25:2 (2023), 78–88
Б. Х. Нгуен, В. Г. Цибулин, “Математическая модель трех конкурирующих популяций и мультистабильность периодических режимов”, Известия вузов. ПНД, 31:3 (2023), 316–333
А. Алмасри, В. Г. Цибулин, “Анализ динамической системы «жертва – хищник – суперхищник»: семейство равновесий и его разрушение”, Компьютерные исследования и моделирование, 15:6 (2023), 1601–1615
Б. Х. Нгуен, Д. Ха, В. Г. Цибулин, “Мультистабильность для системы трех конкурирующих видов”, Компьютерные исследования и моделирование, 14:6 (2022), 1325–1342
Т. Д. Ха, В. Г. Цибулин, “Мультистабильность для математической модели динамики хищников и жертв на неоднородном ареале”, СМФН, 68:3 (2022), 509–521 [T. D. Ha, V. G. Tsybulin, “Multistability for a mathematical model of the dynamics of predators and preys in a heterogeneous area”, CMFD, 68:3 (2022), 509–521]
Д. Ха, В. Г. Цибулин, “Уравнения диффузии-реакции-адвекции для системы «хищник-жертва» в гетерогенной среде”, Компьютерные исследования и моделирование, 13:6 (2021), 1161–1176
Anastasia V. Demidova, Olga V. Druzhinina, Olga N. Masina, Alexey A. Petrov, “Synthesis and Computer Study of Population Dynamics Controlled Models Using Methods of Numerical Optimization, Stochastization and Machine Learning”, Mathematics, 9:24 (2021), 3303
Д. Ха, В. Г. Цибулин, “Мультистабильные сценарии для дифференциальных уравнений, описывающих динамику системы хищников и жертв”, Компьютерные исследования и моделирование, 12:6 (2020), 1451–1466
Е. П. Абрамова, Т. В. Рязанова, “Динамические режимы стохастической модели «хищник–жертва» с учетом конкуренции и насыщения”, Компьютерные исследования и моделирование, 11:3 (2019), 515–531
В. Г. Цибулин, З. Х. Хосаева, “Математическая модель дифференциации общества с социальной напряженностью”, Компьютерные исследования и моделирование, 11:5 (2019), 999–1012
Е. П. Абрамова, Т. В. Рязанова, “Анализ влияния параметрического шума на динамику двух взаимодействующих популяций”, Изв. ИМИ УдГУ, 53 (2019), 3–14
М. А. Абделхафиз, В. Г. Цибулин, “Моделирование анизотропной конвекции бинарной жидкости, насыщающей пористую среду”, Компьютерные исследования и моделирование, 10:6 (2018), 801–816