Аннотация:
Рандомизированное машинное обучение ориентировано на задачи, сопровождаемые значительной неопределенностью в данных и моделях. Алгоритмы машинного обучения формулируются в терминах функциональной задачи энтропийно-линейного программирования. Рассматривается методика их адаптации к задачам прогнозирования на примере временной эволюции площади термокарстовых озер в зонах вечной мерзлоты, которые являются генераторами метана — одного из парниковых газов, влияющих на изменения климата. Предлагаются процедуры рандомизированного машинного обучения, использующие модели динамической регрессии со случайными параметрами, и ретроспективные данные климатических параметров и дистанционного зондирования земной поверхности. Развивается алгоритм рандомизированного машинного обучения, позволяющий вычислять оценки функций плотности распределения вероятностей параметров модели и измерительных шумов. Рандомизированное прогнозирование реализовано в виде алгоритмов трансформации оптимальных распределений в соответствующие им случайные последовательности (алгоритмы сэмплирования). Развиваемые процедуры и технологии рандомизированного прогнозирования применены для обучения, тестирования и прогнозирования эволюции площади термокарстовых озер Западной Сибири.
Образец цитирования:
Ю. А. Дубнов, А. Ю. Попков, В. Ю. Полищук, Е. С. Сокол, А. В. Мельников, Ю. М. Полищук, Ю. С. Попков, “Алгоритмы рандомизированного машинного обучения для прогнозирования эволюции площади термокарстовых озер в зонах вечной мерзлоты”, Автомат. и телемех., 2023, № 1, 98–120; Autom. Remote Control, 84:1 (2023), 64–81