Аннотация:
A new recursion formula is presented for the correlation functions of the integrable spin 1/2XXX chain with inhomogeneity. It links the correlators involving n consecutive lattice sites to those with n−1 and n−2 sites. In a series of papers by V. Korepin and two of the present authors, it was discovered that the correlators have a certain specific structure as functions of the inhomogeneity parameters. The formula mentioned above makes it possible to prove this structure directly, as well as to obtain an exact description of the rational functions that were left undetermined in the earlier work.
Образец цитирования:
H. Boos, M. Jimbo, T. Miwa, F. Smirnov, Y. Takeyama, “A recursion formula for the correlation functions of an inhomogeneous XXX model”, Алгебра и анализ, 17:1 (2005), 115–159; St. Petersburg Math. J., 17:1 (2006), 85–117
\RBibitem{BooJimMiw05}
\by H. Boos, M. Jimbo, T. Miwa, F. Smirnov, Y. Takeyama
\paper A~recursion formula for the correlation functions of an inhomogeneous $XXX$ model
\jour Алгебра и анализ
\yr 2005
\vol 17
\issue 1
\pages 115--159
\mathnet{http://mi.mathnet.ru/aa648}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2140676}
\zmath{https://zbmath.org/?q=an:1124.82002}
\transl
\jour St. Petersburg Math. J.
\yr 2006
\vol 17
\issue 1
\pages 85--117
\crossref{https://doi.org/10.1090/S1061-0022-06-00894-6}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa648
https://www.mathnet.ru/rus/aa/v17/i1/p115
Эта публикация цитируется в следующих 39 статьяx:
Kouhei Fukai, Raphael Kleinemühl, Balázs Pozsgay, Eric Vernier, “On correlation functions in models related to the Temperley-Lieb algebra”, SciPost Phys., 16:1 (2024)
T.S. Tavares, G.A.P. Ribeiro, “Correlation functions of the six-vertex IRF model and its quantum spin chain”, Nuclear Physics B, 1008 (2024), 116715
Levente Pristyák, Balázs Pozsgay, “Current mean values in the XYZ model”, SciPost Phys., 14:6 (2023)
Pei H., Terras V., “On Scalar Products and Form Factors By Separation of Variables: the Antiperiodic Xxz Model”, J. Phys. A-Math. Theor., 55:1 (2022), 015205
G Niccoli, V Terras, “Correlation functions for open XXZ spin 1/2 quantum chains with unparallel boundary magnetic fields”, J. Phys. A: Math. Theor., 55:40 (2022), 405203
G A P Ribeiro, A Klümper, P A Pearce, “On the partition function of the Sp(4) integrable vertex model”, J. Stat. Mech., 2022:11 (2022), 113102
Borsi M., Pozsgay B., Pristyak L., “Current Operators in Integrable Models: a Review”, J. Stat. Mech.-Theory Exp., 2021:9 (2021), 094001
Goehmann F., Kleinemuehl R., Weisse A., “Fourth-Neighbour Two-Point Functions of the Xxz Chain and the Fermionic Basis Approach”, J. Phys. A-Math. Theor., 54:41 (2021), 414001
Frahm H., Westerfeld D., “Density Matrices in Integrable Face Models”, SciPost Phys., 11:3 (2021), 057
Niccoli G., Pei H., Terras V., “Correlation Functions By Separation of Variables: the Xxx Spin Chain”, SciPost Phys., 10:1 (2021), 006
Frank Göhmann, “Statistical mechanics of integrable quantum spin systems”, SciPost Phys. Lect. Notes, 2020
Miwa T., Smirnov F., “New Exact Results on Density Matrix For Xxx Spin Chain”, Lett. Math. Phys., 109:3 (2019), 675–698
Ribeiro G.A.P., Kluemper A., “Correlation Functions of the Integrable Su (N) Spin Chain”, J. Stat. Mech.-Theory Exp., 2019, 013103
Boos H., Hutsalyuk A., Nirov Kh.S., “On the Calculation of the Correlation Functions of the Sl(3)-Model By Means of the Reduced Qkz Equation”, J. Phys. A-Math. Theor., 51:44 (2018), 445202
Pozsgay B., “Excited state correlations of the finite Heisenberg chain”, J. Phys. A-Math. Theor., 50:7 (2017), 074006
Ribeiro G.A.P., Kluemper A., “Correlation functions of the integrable spin- s chain”, J. Phys. A-Math. Theor., 49:25 (2016), 254001
M. Джимбо, Т. Мива, Ф. А. Смирнов, “Операторы рождения для спиновой цепочки Замолодчикова–Фатеева”, ТМФ, 181:1 (2014), 45–72; M. Jimbo, T. Miwa, F. A. Smirnov, “Creation operators for the Fateev–Zamolodchikov spin chain”, Theoret. and Math. Phys., 181:1 (2014), 1169–1193
Levy-Bencheton D., Terras V., “An Algebraic Bethe Ansatz Approach to Form Factors and Correlation Functions of the Cyclic Eight-Vertex Solid-on-Solid Model”, J. Stat. Mech.-Theory Exp., 2013, P04015