|
Алгебра и анализ, 1994, том 6, выпуск 6, страницы 128–153
(Mi aa485)
|
|
|
|
Статьи
Partial regularity of the deformation gradient for some model problems in nonlinear twodimensional elasticity
M. Fuchsa, G. A. Sereginb a Saarland University
b St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Аннотация:
We consider the model problem of minimizing the functional ∫Ω12|∇u|2+h(det∇u)dx where u:R2⊃Ω→R2 and h:R→[0,∞] denotes a function which is convex and smooth on (0,∞), limt↓0h(t)=+∞ and h≡+∞ on (−∞,0]. In particular, we show that it is possible to introduce an approximation ∫Ω12|∇u|2+hδ(det∇u)dx for the energy whose minimizers uδ are of class C1 on some open subset Ωδ of Ω and converge strongly in H1,2(Ω,R2) to a minimizer и of the original problem. Moreover, we have control on the measure of the exceptional set in the sense that |Ω−Ωδ|→0 as δ→0.
Ключевые слова:
Nonlinear elasticity, partial regularity, approximation.
Поступила в редакцию: 25.05.1994
Образец цитирования:
M. Fuchs, G. A. Seregin, “Partial regularity of the deformation gradient for some model problems in nonlinear twodimensional elasticity”, Алгебра и анализ, 6:6 (1994), 128–153; St. Petersburg Math. J., 6:6 (1995), 1229–1248
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa485 https://www.mathnet.ru/rus/aa/v6/i6/p128
|
Статистика просмотров: |
Страница аннотации: | 350 | PDF полного текста: | 184 | Список литературы: | 2 | Первая страница: | 1 |
|