Аннотация:
Formal asymptotic algorithms are considered for a class of meso-scale approximations for problems of vibration of elastic membranes that contain clusters of small inertial inclusions distributed along contours of predefined smooth shapes. Effective transmission conditions have been identified for inertial structured interfaces, and approximations to solutions of eigenvalue problems have been derived for domains containing lower-dimensional clusters of inclusions.
Ключевые слова:
two-dimensional elastic membranes, clusters of small inclusions, inertia of inclusions.
V.G.M. acknowledges that this publication has been prepared with the support of the “RUDN University Program 5-100.” A.B.M would like to thank the EPSRC (UK) for its support through the Programme Grant №EP/L024926/1. M.J.N gratefully acknowledges the support of the EU H2020 grant MSCA-IF-2016-747334-CAT-FFLAP.
Образец цитирования:
V. G. Maz'ya, A. B. Movchan, M. J. Nieves, “On meso-scale approximations for vibrations of membranes with lower-dimensional clusters of inertial inclusions”, Алгебра и анализ, 32:3 (2020), 219–237; St. Petersburg Math. J., 32:3 (2021), 551–564
\RBibitem{MazMovNie20}
\by V.~G.~Maz'ya, A.~B.~Movchan, M.~J.~Nieves
\paper On meso-scale approximations for vibrations of membranes with lower-dimensional clusters of inertial inclusions
\jour Алгебра и анализ
\yr 2020
\vol 32
\issue 3
\pages 219--237
\mathnet{http://mi.mathnet.ru/aa1706}
\transl
\jour St. Petersburg Math. J.
\yr 2021
\vol 32
\issue 3
\pages 551--564
\crossref{https://doi.org/10.1090/spmj/1661}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1706
https://www.mathnet.ru/rus/aa/v32/i3/p219
Эта публикация цитируется в следующих 6 статьяx:
Anna Y. Zemlyanova, Yuri A. Godin, Sofia G. Mogilevskaya, “Analytical solution for doubly-periodic harmonic problems with circular inhomogeneities and superconducting or membrane-type interfaces”, European Journal of Mechanics - A/Solids, 100 (2023), 104556
Paolo Musolino, Martin Dutko, Gennady Mishuris, “Asymptotic analysis of perturbed Robin problems in a planar domain”, ejde, 2023:01-?? (2023), 57
V. G. Maz'ya, A. B. Movchan, M. J. Nieves, “Mesoscale Asymptotic Approximations in the Dynamics of Solids with Defects”, J Math Sci, 268:4 (2022), 443
Alexandra A. Yakovleva, Igor B. Movchan, Zilya I. Shaygallyamova, “Dynamic response of multi-scale geophysical systems: waves and practical applications”, Phil. Trans. R. Soc. A., 380:2237 (2022)
Paolo Musolino, Gennady Mishuris, “Interaction of scales for a singularly perturbed degenerating nonlinear Robin problem”, Phil. Trans. R. Soc. A., 380:2236 (2022)
Falconi R., Luzzini P., Musolino P., “Asymptotic Behavior of Integral Functionals For a Two-Parameter Singularly Perturbed Nonlinear Traction Problem”, Math. Meth. Appl. Sci., 44:2 (2021), 2111–2129