Аннотация:
In this article, we continue our investigation into the unique continuation properties of real-valued solutions to elliptic equations in the plane. More precisely, we make another step towards proving a quantitative version of Landis' conjecture by establishing unique continuation at infinity estimates for solutions to equations of the form −Δu+Vu=0−Δu+Vu=0 in R2, where V=V+−V−, V+∈L∞, and V− is a nontrivial function that exhibits exponential decay at infinity. The main tool in the proof of this theorem is an order of vanishing estimate in combination with an iteration scheme. To prove the order of vanishing estimate, we establish a similarity principle for vector-valued Beltrami systems.
Ключевые слова:
Landis' conjecture, quantitative unique continuation, order of vanishing, vector-valued Beltrami system.
Davey is supported in part by the Simons Foundation Grant 430198.
Kenig is supported in part by NSF DMS-1265249.
Wang is supported in part by MOST 105-2115-M-002-014-MY3.
Образец цитирования:
B. Davey, C. Kenig, J.-N. Wang, “On Landis' conjecture in the plane when the potential has an exponentially decaying negative part”, Алгебра и анализ, 31:2 (2019), 204–226; St. Petersburg Math. J., 31:2 (2019), 337–353
\RBibitem{DavKenWan19}
\by B.~Davey, C.~Kenig, J.-N.~Wang
\paper On Landis' conjecture in the plane when the potential has an exponentially decaying negative part
\jour Алгебра и анализ
\yr 2019
\vol 31
\issue 2
\pages 204--226
\mathnet{http://mi.mathnet.ru/aa1644}
\transl
\jour St. Petersburg Math. J.
\yr 2019
\vol 31
\issue 2
\pages 337--353
\crossref{https://doi.org/10.1090/spmj/1600}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000515138700009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85106844716}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1644
https://www.mathnet.ru/rus/aa/v31/i2/p204
Эта публикация цитируется в следующих 7 статьяx:
Xiujin Chen, Hairong Liu, Xiaoping Yang, “The Landis conjecture for degenerate equations of Grushin type”, Journal of Differential Equations, 425 (2025), 576
Pu-Zhao Kow, Jenn-Nan Wang, “Landis-type conjecture for the half-Laplacian”, Proc. Amer. Math. Soc., 151:7 (2023), 2951
Liu W., “Irreducibility of the Fermi Variety For Discrete Periodic Schrodinger Operators and Embedded Eigenvalues”, Geom. Funct. Anal., 32:1 (2022), 1–30
Blair Davey, Carlos Kenig, Jenn-Nan Wang, “Improved quantitative unique continuation for complex-valued drift equations in the plane”, Forum Mathematicum, 34:6 (2022), 1641
B. Davey, “On landis' conjecture in the plane for some equations with sign-changing potentials”, Rev. Mat. Iberoam., 36:5 (2020), 1571–1596
B. Davey, “Quantitative unique continuation for Schrodinger operators”, J. Funct. Anal., 279:4 (2020), UNSP 108566
Yu. Men, W. Wang, L. Zhao, “Asymptotic behavior of the steady Navier-Stokes flow in the exterior domain”, J. Differ. Equ., 269:9 (2020), 7311–7325