Аннотация:
A functional model is constructed for rank one perturbations of compact normal operators that act in a certain Hilbert spaces of entire functions generalizing the de Branges spaces. By using this model, completeness and spectral synthesis problems are studied for such perturbations. Previously, the spectral theory of rank one perturbations was developed in the selfadjoint case by D. Yakubovich and the author. In the present paper, most of known results in the area are extended and simplified significantly. Also, an ordering theorem for invariant subspaces with common spectral part is proved. This result is new even for rank one perturbations of compact selfadjoint operators.
Theorems 2.1–2.6 and the results of §§ 3–6 were obtained with the support of Russian Science Foundation project № 14-21-00035. Theorems 2.7 and 2.8 and the results of §§ 7,8 were obtained as a part of joint grant of Russian Foundation for Basic Research (project № 17-51-150005-NCNI-a) and CNRS, France (project PRC CNRS/RFBR 2017-2019 “Noyaux reproduisants dans des espaces de Hilbert de fonctions analytiques”).
Образец цитирования:
A. D. Baranov, “Spectral theory of rank one perturbations of normal compact operators”, Алгебра и анализ, 30:5 (2018), 1–56; St. Petersburg Math. J., 30:5 (2019), 761–802
\RBibitem{Bar18}
\by A.~D.~Baranov
\paper Spectral theory of rank one perturbations of normal compact operators
\jour Алгебра и анализ
\yr 2018
\vol 30
\issue 5
\pages 1--56
\mathnet{http://mi.mathnet.ru/aa1613}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3856100}
\elib{https://elibrary.ru/item.asp?id=41622974}
\transl
\jour St. Petersburg Math. J.
\yr 2019
\vol 30
\issue 5
\pages 761--802
\crossref{https://doi.org/10.1090/spmj/1569}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000477770800001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85070095904}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1613
https://www.mathnet.ru/rus/aa/v30/i5/p1
Эта публикация цитируется в следующих 11 статьяx:
A. D. Baranov, “Complementing Nonuniqueness Sets in Model Spaces”, J Math Sci, 282:4 (2024), 473
Anton Baranov, Yurii Belov, “Irregular sampling for hyperbolic secant type functions”, Advances in Mathematics, 458 (2024), 109981
Anton Baranov, “Cauchy–de Branges Spaces, Geometry of Their Reproducing Kernels and Multiplication Operators”, Milan J. Math., 91:1 (2023), 97
А. Д. Баранов, “Дополнение множеств неединственности в модельных подпространствах”, Исследования по линейным операторам и теории функций. 50, Зап. научн. сем. ПОМИ, 512, ПОМИ, СПб., 2022, 27–34
M. Putinar, D. Yakubovich, “Spectral dissection of finite rank perturbations of normal operators”, J. Operat. Theor., 85:1 (2021), 45–78
А. Ю. Трынин, “О сходимости обобщений синк-аппроксимаций на классе Привалова–Чантурия”, Сиб. журн. индустр. матем., 24:3 (2021), 122–137
Yurii Belov, Trends in Mathematics, 12, Extended Abstracts Fall 2019, 2021, 25
А. Ю. Трынин, “О равномерном приближении интерполяционными многочленами Лагранжа по матрице узлов Якоби L(αn,βn)n функций ограниченной вариации”, Изв. РАН. Сер. матем., 84:6 (2020), 197–222; A. Yu. Trynin, “On the uniform approximation of functions of bounded variation by Lagrange interpolation
polynomials with a matrix L(αn,βn)n of Jacobi nodes”, Izv. Math., 84:6 (2020), 1224–1249
A. Yu. Trynin, “Error Estimate for Uniform Approximation by Lagrange–Sturm–Liouville Processes”, J Math Sci, 247:6 (2020), 939
E. Abakumov, A. Baranov, Yu. Belov, “Krein-type theorems and ordered structure for Cauchy-de branges spaces”, J. Funct. Anal., 277:1 (2019), 200–226
A. V. Agibalova, A. A. Lunyov, M. M. Malamud, L. L. Oridoroga, “Completeness property of one-dimensional perturbations of normal and spectral operators generated by first order systems”, Integr. Equ. Oper. Theory, 91:4 (2019), UNSP 37