Алгебра и анализ
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Алгебра и анализ:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Алгебра и анализ, 2015, том 27, выпуск 3, страницы 125–156 (Mi aa1438)  

Эта публикация цитируется в 22 научных статьях (всего в 22 статьях)

Статьи

Regularity of solutions of the fractional porous medium flow with exponent 1/21/2

L. Caffarelliab, J. L. Vázquezc

a Institute for Computational Engineering and Sciences, USA
b School of Mathematics, University of Texas at Austin, 1 University Station, C1200, Austin, Texas 78712-1082, USA
c Universidad Autónoma de Madrid, Departamento de Matemáticas, 28049, Madrid, Spain
Список литературы:
Аннотация: The object of study is the regularity of a porous medium equation with nonlocal diffusion effects given by an inverse fractional Laplacian operator. The precise model is ut=(u(Δ)1/2u)ut=(u(Δ)1/2u). For definiteness, the problem is posed in {xRN,tR} with nonnegative initial data u(x,0) that is integrable and decays at infinity. Previous papers have established the existence of mass-preserving, nonnegative weak solutions satisfying energy estimates and finite propagation, as well as the boundedness of nonnegative solutions with L1 data, for the more general family of equations ut=(u(Δ)su), 0<s<1.
Here, the Cα regularity of such weak solutions is established in the difficult fractional exponent case s=1/2. For the other fractional exponents s(0,1) this Hölder regularity has been proved in an earlier paper. Continuity was under question because the nonlinear differential operator has first-order differentiation. The method combines delicate De Giorgi type estimates with iterated geometric corrections that are needed to avoid the divergence of some essential energy integrals due to fractional long-range effects.
Ключевые слова: porous medium equation, fractional Laplacian, nonlocal diffusion operator, Hölder regularity.
Поступила в редакцию: 06.01.2015
Англоязычная версия:
St. Petersburg Mathematical Journal, 2016, Volume 27, Issue 3, Pages 437–460
DOI: https://doi.org/10.1090/spmj/1397
Реферативные базы данных:
Тип публикации: Статья
Язык публикации: английский
Образец цитирования: L. Caffarelli, J. L. Vázquez, “Regularity of solutions of the fractional porous medium flow with exponent 1/2”, Алгебра и анализ, 27:3 (2015), 125–156; St. Petersburg Math. J., 27:3 (2016), 437–460
Цитирование в формате AMSBIB
\RBibitem{CafVaz15}
\by L.~Caffarelli, J.~L.~V\'azquez
\paper Regularity of solutions of the fractional porous medium flow with exponent~$1/2$
\jour Алгебра и анализ
\yr 2015
\vol 27
\issue 3
\pages 125--156
\mathnet{http://mi.mathnet.ru/aa1438}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3570960}
\elib{https://elibrary.ru/item.asp?id=24849893}
\transl
\jour St. Petersburg Math. J.
\yr 2016
\vol 27
\issue 3
\pages 437--460
\crossref{https://doi.org/10.1090/spmj/1397}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000373930300007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84963533307}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/aa1438
  • https://www.mathnet.ru/rus/aa/v27/i3/p125
  • Эта публикация цитируется в следующих 22 статьяx:
    1. Jiajun Tong, “Global solutions to the tangential Peskin problem in 2-D”, Nonlinearity, 37:1 (2024), 015006  crossref
    2. Ioannis P. A. Papadopoulos, Sheehan Olver, “A sparse spectral method for fractional differential equations in one-spatial dimension”, Adv Comput Math, 50:4 (2024)  crossref
    3. Yatao Li, Qianyun Miao, Changhui Tan, Liutang Xue, “Global Well-Posedness and Refined Regularity Criterion for the Uni-Directional Euler-Alignment System”, International Mathematics Research Notices, 2024  crossref
    4. Alexander Kiselev, Changhui Tan, “Global Regularity for a Nonlocal PDE Describing Evolution of Polynomial Roots Under Differentiation”, SIAM J. Math. Anal., 54:3 (2022), 3161  crossref
    5. Alexander Kiselev, Changhui Tan, “The Flow of Polynomial Roots Under Differentiation”, Ann. PDE, 8:2 (2022)  crossref
    6. Patrizi S., Sangsawang T., “From the Peierls-Nabarro Model to the Equation of Motion of the Dislocation Continuum”, Nonlinear Anal.-Theory Methods Appl., 202 (2021), 112096  crossref  mathscinet  zmath  isi
    7. Qu M., Wu J., “Liouville Theorem Involving the Uniformly Nonlocal Operator”, Bull. Malays. Math. Sci. Soc., 44:4 (2021), 1893–1903  crossref  mathscinet  isi
    8. Arnaiz V., Castro A., “Singularity Formation For the Fractional Euler-Alignment System in 1D”, Trans. Am. Math. Soc., 374:1 (2021), 487–514  crossref  mathscinet  zmath  isi  scopus
    9. Daus E., Gualdani M.P., Xu J., Zamponi N., Zhang X., “Non-Local Porous Media Equations With Fractional Time Derivative”, Nonlinear Anal.-Theory Methods Appl., 211 (2021), 112486  crossref  mathscinet  isi
    10. Caffarelli L., Gualdani M., Zamponi N., “Existence of Weak Solutions to a Continuity Equation With Space Time Nonlocal Darcy Law”, Commun. Partial Differ. Equ., 45:12 (2020), 1799–1819  crossref  mathscinet  isi  scopus
    11. J. Villa-Morales, “Hyers-ulam stability of a nonautonomous semilinear equation with fractional diffusion”, Demonstr. Math., 53:1 (2020), 269–276  crossref  mathscinet  zmath  isi  scopus
    12. E. S. Daus, M. Gualdani, N. Zamponi, “Longtime behavior and weak-strong uniqueness for a nonlocal porous media equation”, J. Differ. Equ., 268:4 (2020), 1820–1839  crossref  mathscinet  zmath  isi
    13. C. Imbert, R. Tarhini, F. Vigneron, “Regularity of solutions of a fractional porous medium equation”, Interface Free Bound., 22:4 (2020), 401–442  crossref  mathscinet  zmath  isi
    14. D. Stan, F. Del Teso, J. L. Vazquez, “Existence of weak solutions for a general porous medium equation with nonlocal pressure”, Arch. Ration. Mech. Anal., 233:1 (2019), 451–496  crossref  mathscinet  zmath  isi  scopus
    15. Ch. Tan, “Singularity formation for a fluid mechanics model with nonlocal velocity”, Commun. Math. Sci., 17:7 (2019), 1779–1794  crossref  mathscinet  zmath  isi
    16. S. Lisini, E. Mainini, A. Segatti, “A gradient flow approach to the porous medium equation with fractional pressure”, Arch. Ration. Mech. Anal., 227:2 (2018), 567–606  crossref  mathscinet  zmath  isi  scopus
    17. Y. Cheng, Sh. Gao, Yu. Wu, “Exact controllability of fractional order evolution equations in Banach spaces”, Adv. Differ. Equ., 2018, 332  crossref  mathscinet  isi  scopus
    18. Quoc-Hung Nguyen, J. L. Vazquez, “Porous medium equation with nonlocal pressure in a bounded domain”, Commun. Partial Differ. Equ., 43:10 (2018), 1502–1539  crossref  mathscinet  zmath  isi  scopus
    19. Diana Stan, Félix del Teso, Juan Luis Vázquez, Springer Optimization and Its Applications, 135, Current Research in Nonlinear Analysis, 2018, 277  crossref
    20. J. Villa-Morales, “Instantaneous blow-up of semilinear non-autonomous equations with fractional diffusion”, Electron. J. Differ. Equ., 2017, 116  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Статистика просмотров:
    Страница аннотации:337
    PDF полного текста:107
    Список литературы:75
    Первая страница:19
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025