Аннотация:
The object of study is the regularity of a porous medium equation with nonlocal diffusion effects given by an inverse fractional Laplacian operator. The precise model is ut=∇⋅(u∇(−Δ)−1/2u)ut=∇⋅(u∇(−Δ)−1/2u). For definiteness, the problem is posed in {x∈RN,t∈R} with nonnegative initial data u(x,0) that is integrable and decays at infinity. Previous papers have established the existence of mass-preserving, nonnegative weak solutions satisfying energy estimates and finite propagation, as well as the boundedness of nonnegative solutions with L1 data, for the more general family of equations ut=∇⋅(u∇(−Δ)−su), 0<s<1.
Here, the Cα regularity of such weak solutions is established in the difficult fractional exponent case s=1/2. For the other fractional exponents s∈(0,1) this Hölder regularity has been proved in an earlier paper. Continuity was under question because the nonlinear differential operator has first-order differentiation. The method combines delicate De Giorgi type estimates with iterated geometric corrections that are needed to avoid the divergence of some essential energy integrals due to fractional long-range effects.
Образец цитирования:
L. Caffarelli, J. L. Vázquez, “Regularity of solutions of the fractional porous medium flow with exponent 1/2”, Алгебра и анализ, 27:3 (2015), 125–156; St. Petersburg Math. J., 27:3 (2016), 437–460
\RBibitem{CafVaz15}
\by L.~Caffarelli, J.~L.~V\'azquez
\paper Regularity of solutions of the fractional porous medium flow with exponent~$1/2$
\jour Алгебра и анализ
\yr 2015
\vol 27
\issue 3
\pages 125--156
\mathnet{http://mi.mathnet.ru/aa1438}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3570960}
\elib{https://elibrary.ru/item.asp?id=24849893}
\transl
\jour St. Petersburg Math. J.
\yr 2016
\vol 27
\issue 3
\pages 437--460
\crossref{https://doi.org/10.1090/spmj/1397}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000373930300007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84963533307}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1438
https://www.mathnet.ru/rus/aa/v27/i3/p125
Эта публикация цитируется в следующих 22 статьяx:
Jiajun Tong, “Global solutions to the tangential Peskin problem in 2-D”, Nonlinearity, 37:1 (2024), 015006
Ioannis P. A. Papadopoulos, Sheehan Olver, “A sparse spectral method for fractional differential equations in one-spatial dimension”, Adv Comput Math, 50:4 (2024)
Yatao Li, Qianyun Miao, Changhui Tan, Liutang Xue, “Global Well-Posedness and Refined Regularity Criterion for the Uni-Directional Euler-Alignment System”, International Mathematics Research Notices, 2024
Alexander Kiselev, Changhui Tan, “Global Regularity for a Nonlocal PDE Describing Evolution of Polynomial Roots Under Differentiation”, SIAM J. Math. Anal., 54:3 (2022), 3161
Alexander Kiselev, Changhui Tan, “The Flow of Polynomial Roots Under Differentiation”, Ann. PDE, 8:2 (2022)
Patrizi S., Sangsawang T., “From the Peierls-Nabarro Model to the Equation of Motion of the Dislocation Continuum”, Nonlinear Anal.-Theory Methods Appl., 202 (2021), 112096
Qu M., Wu J., “Liouville Theorem Involving the Uniformly Nonlocal Operator”, Bull. Malays. Math. Sci. Soc., 44:4 (2021), 1893–1903
Arnaiz V., Castro A., “Singularity Formation For the Fractional Euler-Alignment System in 1D”, Trans. Am. Math. Soc., 374:1 (2021), 487–514
Daus E., Gualdani M.P., Xu J., Zamponi N., Zhang X., “Non-Local Porous Media Equations With Fractional Time Derivative”, Nonlinear Anal.-Theory Methods Appl., 211 (2021), 112486
Caffarelli L., Gualdani M., Zamponi N., “Existence of Weak Solutions to a Continuity Equation With Space Time Nonlocal Darcy Law”, Commun. Partial Differ. Equ., 45:12 (2020), 1799–1819
J. Villa-Morales, “Hyers-ulam stability of a nonautonomous semilinear equation with fractional diffusion”, Demonstr. Math., 53:1 (2020), 269–276
E. S. Daus, M. Gualdani, N. Zamponi, “Longtime behavior and weak-strong uniqueness for a nonlocal porous media equation”, J. Differ. Equ., 268:4 (2020), 1820–1839
C. Imbert, R. Tarhini, F. Vigneron, “Regularity of solutions of a fractional porous medium equation”, Interface Free Bound., 22:4 (2020), 401–442
D. Stan, F. Del Teso, J. L. Vazquez, “Existence of weak solutions for a general porous medium equation with nonlocal pressure”, Arch. Ration. Mech. Anal., 233:1 (2019), 451–496
Ch. Tan, “Singularity formation for a fluid mechanics model with nonlocal velocity”, Commun. Math. Sci., 17:7 (2019), 1779–1794
S. Lisini, E. Mainini, A. Segatti, “A gradient flow approach to the porous medium equation with fractional pressure”, Arch. Ration. Mech. Anal., 227:2 (2018), 567–606
Y. Cheng, Sh. Gao, Yu. Wu, “Exact controllability of fractional order evolution equations in Banach spaces”, Adv. Differ. Equ., 2018, 332
Quoc-Hung Nguyen, J. L. Vazquez, “Porous medium equation with nonlocal pressure in a bounded domain”, Commun. Partial Differ. Equ., 43:10 (2018), 1502–1539
Diana Stan, Félix del Teso, Juan Luis Vázquez, Springer Optimization and Its Applications, 135, Current Research in Nonlinear Analysis, 2018, 277
J. Villa-Morales, “Instantaneous blow-up of semilinear non-autonomous equations with fractional diffusion”, Electron. J. Differ. Equ., 2017, 116