Аннотация:
Optimal regularity near the initial state is established for weak solutions of the two-phase parabolic obstacle problem. The approach is sufficiently general to allow the initial data to belong to the class $C^{1,1}$.
Образец цитирования:
D. E. Apushkinskaya, N. N. Uraltseva, “Uniform estimates near the initial state for solutions of the two-phase parabolic problem”, Алгебра и анализ, 25:2 (2013), 63–74; St. Petersburg Math. J., 25:2 (2014), 195–203
\RBibitem{ApuUra13}
\by D.~E.~Apushkinskaya, N.~N.~Uraltseva
\paper Uniform estimates near the initial state for solutions of the two-phase parabolic problem
\jour Алгебра и анализ
\yr 2013
\vol 25
\issue 2
\pages 63--74
\mathnet{http://mi.mathnet.ru/aa1323}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3114850}
\zmath{https://zbmath.org/?q=an:1304.35144}
\elib{https://elibrary.ru/item.asp?id=20730197}
\transl
\jour St. Petersburg Math. J.
\yr 2014
\vol 25
\issue 2
\pages 195--203
\crossref{https://doi.org/10.1090/S1061-0022-2014-01285-X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000343074000003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84924352195}