Аннотация:
The radial behavior of analytic and harmonic functions that admit a certain majorant in the unit disk is studied. We prove that the extremal growth or decay may occur only along small sets of radii and give precise estimates for these exceptional sets.
Ключевые слова:
spaces of analytic functions in the disk, harmonic functions, boundary values, Korenblum spaces.
Образец цитирования:
A. Borichev, Yu. Lyubarskiǐ, E. Malinnikova, P. Thomas, “Radial growth of functions in the Korenblum space”, Алгебра и анализ, 21:6 (2009), 47–65; St. Petersburg Math. J., 21:6 (2010), 877–891
\RBibitem{BorLyuMal09}
\by A.~Borichev, Yu.~Lyubarski{\v\i}, E.~Malinnikova, P.~Thomas
\paper Radial growth of functions in the Korenblum space
\jour Алгебра и анализ
\yr 2009
\vol 21
\issue 6
\pages 47--65
\mathnet{http://mi.mathnet.ru/aa1162}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2604542}
\zmath{https://zbmath.org/?q=an:1208.30052}
\transl
\jour St. Petersburg Math. J.
\yr 2010
\vol 21
\issue 6
\pages 877--891
\crossref{https://doi.org/10.1090/S1061-0022-2010-01123-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000284238100002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84861014284}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1162
https://www.mathnet.ru/rus/aa/v21/i6/p47
Эта публикация цитируется в следующих 9 статьяx:
Massimo A. Picardello, Maura Salvatori, Wolfgang Woess, “Polyharmonic potential theory on the Poincaré disk”, Journal of Functional Analysis, 286:9 (2024), 110362
Hedenmalm H., Shimorin S., “Gaussian Analytic Functions and Operator Symbols of Dirichlet Type”, Adv. Math., 372 (2020), 107301
Mozolyako P., “Boundary Oscillations of Harmonic Functions in Lipschitz Domains”, Collect. Math., 68:3 (2017), 359–376